Verwandte Artikel zu Learning and Coordination: Enhancing Agent Performance...

Learning and Coordination: Enhancing Agent Performance through Distributed Decision Making: 13 (Intelligent Systems, Control and Automation: Science and Engineering) - Hardcover

 
9780792330462: Learning and Coordination: Enhancing Agent Performance through Distributed Decision Making: 13 (Intelligent Systems, Control and Automation: Science and Engineering)

Reseña del editor

Intelligent systems of the natural kind are adaptive and robust: they learn over time and degrade gracefully under stress. If artificial systems are to display a similar level of sophistication, an organizing framework and operating principles are required to manage the resulting complexity of design and behavior.
This book presents a general framework for adaptive systems. The utility of the comprehensive framework is demonstrated by tailoring it to particular models of computational learning, ranging from neural networks to declarative logic.
The key to robustness lies in distributed decision making. An exemplar of this strategy is the neural network in both its biological and synthetic forms. In a neural network, the knowledge is encoded in the collection of cells and their linkages, rather than in any single component. Distributed decision making is even more apparent in the case of independent agents. For a population of autonomous agents, their proper coordination may well be more instrumental for attaining their objectives than are their individual capabilities.
This book probes the problems and opportunities arising from autonomous agents acting individually and collectively. Following the general framework for learning systems and its application to neural networks, the coordination of independent agents through game theory is explored. Finally, the utility of game theory for artificial agents is revealed through a case study in robotic coordination.
Given the universality of the subjects -- learning behavior and coordinative strategies in uncertain environments -- this book will be of interest to students and researchers in various disciplines, ranging from all areas of engineering to the computing disciplines; from the life sciences to the physical sciences; and from the management arts to social studies.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum1994
  • ISBN 10 0792330463
  • ISBN 13 9780792330462
  • EinbandTapa dura
  • SpracheEnglisch
  • Anzahl der Seiten206

EUR 14,17 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9789401044424: Learning and Coordination: Enhancing Agent Performance through Distributed Decision Making: 13 (Intelligent Systems, Control and Automation: Science and Engineering)

Vorgestellte Ausgabe

ISBN 10:  9401044422 ISBN 13:  9789401044424
Verlag: Springer, 2012
Softcover

Suchergebnisse für Learning and Coordination: Enhancing Agent Performance...

Beispielbild für diese ISBN

Kim, S.H.
Verlag: Springer, 1994
ISBN 10: 0792330463 ISBN 13: 9780792330462
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780792330462_new

Verkäufer kontaktieren

Neu kaufen

EUR 169,56
Währung umrechnen
Versand: EUR 14,17
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

S. H. Kim
ISBN 10: 0792330463 ISBN 13: 9780792330462
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Intelligent systems of the natural kind are adaptive and robust: they learn over time and degrade gracefully under stress. If artificial systems are to display a similar level of sophistication, an organizing framework and operating principles are required to manage the resulting complexity of design and behavior. This book presents a general framework for adaptive systems. The utility of the comprehensive framework is demonstrated by tailoring it to particular models of computational learning, ranging from neural networks to declarative logic. The key to robustness lies in distributed decision making. An exemplar of this strategy is the neural network in both its biological and synthetic forms. In a neural network, the knowledge is encoded in the collection of cells and their linkages, rather than in any single component. Distributed decision making is even more apparent in the case of independent agents. For a population of autonomous agents, their proper coordination may well be more instrumental for attaining their objectives than are their individual capabilities. This book probes the problems and opportunities arising from autonomous agents acting individually and collectively. Following the general framework for learning systems and its application to neural networks, the coordination of independent agents through game theory is explored. Finally, the utility of game theory for artificial agents is revealed through a case study in robotic coordination. Given the universality of the subjects -- learning behavior and coordinative strategies in uncertain environments -- this book will be of interest to students and researchers in various disciplines, ranging from all areas of engineering to the computing disciplines; from the life sciences to the physical sciences; and from the management arts to social studies. Artikel-Nr. 9780792330462

Verkäufer kontaktieren

Neu kaufen

EUR 168,73
Währung umrechnen
Versand: EUR 30,38
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb