The bestselling author of Dogs That Know When Their Owners Are Coming Home offers an intriguing new assessment of modern day science that will radically change the way we view what is possible.
In Science Set Free (originally published to acclaim in the UK as The Science Delusion), Dr. Rupert Sheldrake, one of the world's most innovative scientists, shows the ways in which science is being constricted by assumptions that have, over the years, hardened into dogmas. Such dogmas are not only limiting, but dangerous for the future of humanity.
According to these principles, all of reality is material or physical; the world is a machine, made up of inanimate matter; nature is purposeless; consciousness is nothing but the physical activity of the brain; free will is an illusion; God exists only as an idea in human minds, imprisoned within our skulls.
But should science be a belief-system, or a method of enquiry? Sheldrake shows that the materialist ideology is moribund; under its sway, increasingly expensive research is reaping diminishing returns while societies around the world are paying the price.
In the skeptical spirit of true science, Sheldrake turns the ten fundamental dogmas of materialism into exciting questions, and shows how all of them open up startling new possibilities for discovery.
Science Set Free will radically change your view of what is real and what is possible.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
DR. RUPERT SHELDRAKE is a biologist and author of more than 80 technical papers and ten books, including A New Science of Life and Dogs That Know When Their Owners Come Home. He was a Fellow of Clare College, Cambridge, where he was Director of Studies in cell biology, and also was a Research Fellow of the Royal Society. From 2005-2010, he was the Director of the Perrott-Warrick Project for research on unexplained human abilities, funded from Trinity College, Cambridge. He is currently a Fellow of the Institute of Noetic Sciences in California, and a Visiting Professor at the Graduate Institute in Connecticut. He is married, has two sons, and lives in London. His web site is www.sheldrake.org.
Chapter 1
Is Nature Mechanical?
Many people who have not studied science are baffled by scientists’ insistence that animals and plants are machines, and that humans are robots too, controlled by computer-like brains with genetically programmed software. It seems more natural to assume that we are living organisms, and so are animals and plants. Organisms are self-organizing; they form and maintain themselves, and have their own ends or goals. Machines, by contrast, are designed by an external mind; their parts are put together by external machine-makers and they have no purposes or ends of their own.
The starting point for modern science was the rejection of the older, organic view of the universe. The machine metaphor became central to scientific thinking, with very far-reaching consequences. In one way it was immensely liberating. New ways of thinking became possible that encouraged the invention of machines and the evolution of technology. In this chapter, I trace the history of this idea, and show what happens when we question it.
Before the seventeenth century, almost everyone took for granted that the universe was like an organism, and so was the earth. In classical, medieval and Renaissance Europe, nature was alive. Leonardo da Vinci (1452–1519), for example, made this idea explicit: “We can say that the earth has a vegetative soul, and that its flesh is the land, its bones are the structure of the rocks . . . its breathing and its pulse are the ebb and flow of the sea.” William Gilbert (1540–1603), a pioneer of the science of magnetism, was explicit in his organic philosophy of nature: “We consider that the whole universe is animated, and that all the globes, all the stars, and also the noble earth have been governed since the beginning by their own appointed souls and have the motives of self-conservation.”
Even Nicholas Copernicus, whose revolutionary theory of the movement of the heavens, published in 1543, placed the sun at the center rather than the earth was no mechanist. His reasons for making this change were mystical as well as scientific. He thought a central position dignified the sun:
Not unfittingly do some call it the light of the world, others the soul, still others the governor. Tremigistus calls it the visible God: Sophocles’ Electra, the All-seer. And in fact does the sun, seated on his royal throne, guide his family of planets as they circle around him
Copernicus’s revolution in cosmology was a powerful stimulus for the subsequent development of physics. But the shift to the mechanical theory of nature that began after 1600 was much more radical.
For centuries, there had already been mechanical models of some aspects of nature. For example, in Wells Cathedral, in the west of England, there is a still-functioning astronomical clock installed more than six hundred years ago. The clock’s face shows the sun and moon revolving around the earth, against a background of stars. The movement of the sun indicates the time of day, and the inner circle of the clock depicts the moon, rotating once a month. To the delight of visitors, every quarter of an hour, models of jousting knights rush round chasing each other, while a model of a man bangs bells with his heels.
Astronomical clocks were first made in China and in the Arab world, and powered by water. Their construction began in Europe around 1300, but with a new kind of mechanism, operated by weights and escapements. All these early clocks took for granted that the earth was at the center of the universe. They were useful models for telling the time and for predicting the phases of the moon; but no one thought that the universe was really like a clockwork mechanism.
A change from the metaphor of the organism to the metaphor of the machine produced science as we know it: mechanical models of the universe were taken to represent the way the world actually worked. The movements of stars and planets were governed by impersonal mechanical principles, not by souls or spirits with their own lives and purposes.
In 1605, Johannes Kepler summarized his program as follows: “My aim is to show that the celestial machine is to be likened not to a divine organism but rather to clockwork . . . Moreover I show how this physical conception is to be presented through calculation and geometry.”4 Galileo Galilei (1564–1642) agreed that “inexorable, immutable” mathematical laws ruled everything.
The clock analogy was particularly persuasive because clocks work in a self-contained way. They are not pushing or pulling other objects. Likewise the universe performs its work by the regularity of its motions, and is the ultimate time-telling system. Mechanical clocks had a further metaphorical advantage: they were a good example of knowledge through construction, or knowing by doing. Someone who could construct a machine could reconstruct it. Mechanical knowledge was power.
The prestige of mechanistic science did not come primarily from its philosophical underpinnings but from its practical successes, especially in physics. Mathematical modelling typically involves extreme abstraction and simplification, which is easiest to realize with man-made machines or objects. Mathematical mechanics is impressively useful in dealing with relatively simple problems, such as the trajectories of cannonballs or rockets.
One paradigmatic example is billiard-ball physics, which gives a clear account of impacts and collisions of idealized billiard balls in a frictionless environment. Not only is the mathematics simplified, but billiard balls themselves are a very simplified system. The balls are made as round as possible and the table as flat as possible, and there are uniform rubber cushions at the sides of the table, unlike any natural environment. Think of a rock falling down a mountainside for comparison. Moreover, in the real world, billiard balls collide and bounce off each other in games, but the rules of the game and the skills and motives of the players are outside the scope of physics. The mathematical analysis of the balls’ behavior is an extreme abstraction.
From living organisms to biological machines
The vision of mechanical nature developed amid devastating religious wars in seventeenth-century Europe. Mathematical physics was attractive partly because it seemed to provide a way of transcending sectarian conflicts to reveal eternal truths. In their own eyes the pioneers of mechanistic science were finding a new way of understanding the relationship of nature to God, with humans adopting a God-like mathematical omniscience, rising above the limitations of human minds and bodies. As Galileo put it:
When God produces the world, he produces a thoroughly mathematical structure that obeys the laws of number, geometrical figure and quantitative function. Nature is an embodied mathematical system.
But there was a major problem. Most of our experience is not mathematical. We taste food, feel angry, enjoy the beauty of flowers, laugh at jokes. In order to assert the primacy of mathematics, Galileo and his successors had to distinguish between what they called “primary qualities,” which could be described mathematically, such as motion, size and weight, and “secondary qualities,” like color and smell, which were subjective. They took the real world to be objective, quantitative and mathematical. Personal experience in the lived world was subjective, the realm of opinion and illusion, outside the realm of science.
René Descartes (1596–1650) was the principal proponent of the mechanical or mechanistic philosophy of nature. It first came to him in a vision on November 10, 1619, when he was “filled...
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: ThriftBooks-Reno, Reno, NV, USA
Paperback. Zustand: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less. Artikel-Nr. G0770436722I4N00
Anzahl: 1 verfügbar
Anbieter: ThriftBooks-Dallas, Dallas, TX, USA
Paperback. Zustand: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less. Artikel-Nr. G0770436722I4N00
Anzahl: 1 verfügbar
Anbieter: ThriftBooks-Atlanta, AUSTELL, GA, USA
Paperback. Zustand: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less. Artikel-Nr. G0770436722I4N00
Anzahl: 1 verfügbar
Anbieter: ThriftBooks-Dallas, Dallas, TX, USA
Paperback. Zustand: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less. Artikel-Nr. G0770436722I3N00
Anzahl: 1 verfügbar
Anbieter: Better World Books: West, Reno, NV, USA
Zustand: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects. Artikel-Nr. 9658065-6
Anzahl: 1 verfügbar
Anbieter: Better World Books, Mishawaka, IN, USA
Zustand: Good. Used book that is in clean, average condition without any missing pages. Artikel-Nr. 6019632-75
Anzahl: 4 verfügbar
Anbieter: Better World Books: West, Reno, NV, USA
Zustand: Good. Used book that is in clean, average condition without any missing pages. Artikel-Nr. 6019632-75
Anzahl: 1 verfügbar
Anbieter: True Oak Books, Highland, NY, USA
Paperback. Zustand: Good+. Good overall condition; contains very occasional underlining/marking from previous owner. Minor wear.; - We offer free returns for any reason and respond promptly to all inquiries. Your order will be packaged with care and ship on the same or next business day. Buy with confidence. Artikel-Nr. HVD-18330-A-0
Anzahl: 1 verfügbar
Anbieter: WorldofBooks, Goring-By-Sea, WS, Vereinigtes Königreich
Paperback. Zustand: Fair. A readable copy of the book which may include some defects such as highlighting and notes. Cover and pages may be creased and show discolouration. Artikel-Nr. GOR014518986
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 400. Artikel-Nr. 55172313
Anzahl: 1 verfügbar