Verwandte Artikel zu Hangzhou Lectures on Eigenfunctions of the Laplacian:...

Hangzhou Lectures on Eigenfunctions of the Laplacian: 188 (Annals of Mathematics Studies, 188) - Hardcover

 
9780691160757: Hangzhou Lectures on Eigenfunctions of the Laplacian: 188 (Annals of Mathematics Studies, 188)

Inhaltsangabe

Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. Christopher Sogge gives a proof of the sharp Weyl formula for the distribution of eigenvalues of Laplace-Beltrami operators, as well as an improved version of the Weyl formula, the Duistermaat-Guillemin theorem under natural assumptions on the geodesic flow. Sogge shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic. Sogge begins with a treatment of the Hadamard parametrix before proving the first main result, the sharp Weyl formula. He avoids the use of Tauberian estimates and instead relies on sup-norm estimates for eigenfunctions. The author also gives a rapid introduction to the stationary phase and the basics of the theory of pseudodifferential operators and microlocal analysis. These are used to prove the Duistermaat-Guillemin theorem. Turning to the related topic of quantum ergodicity, Sogge demonstrates that if the long-term geodesic flow is uniformly distributed, most eigenfunctions exhibit a similar behavior, in the sense that their mass becomes equidistributed as their frequencies go to infinity.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Christopher D. Sogge is the J. J. Sylvester Professor of Mathematics at Johns Hopkins University. He is the author of Fourier Integrals in Classical Analysis and Lectures on Nonlinear Wave Equations.

Auszug. © Genehmigter Nachdruck. Alle Rechte vorbehalten.

Hangzhou Lectures on Eigenfunctions of the Laplacian

By Christopher D. Sogge

PRINCETON UNIVERSITY PRESS

Copyright © 2014 Princeton University Press
All rights reserved.
ISBN: 978-0-691-16075-7

Contents

Preface, ix,
1 A review: The Laplacian and the d'Alembertian, 1,
2 Geodesics and the Hadamard parametrix, 16,
3 The sharp Weyl formula, 39,
4 Stationary phase and microlocal analysis, 71,
5 Improved spectral asymptotics and periodic geodesics, 120,
6 Classical and quantum ergodicity, 141,
Appendix, 165,
Notes, 183,
Bibliography, 185,
Index, 191,
Symbol Glossary, 193,


CHAPTER 1

A review: The Laplacian and the d'Alembertian


1.1 THE LAPLACIAN

One of the main goals of this course is to understand well the solution of waveequation both in Euclidean space and on manifolds and then to use this knowledgeto derive properties of eigenfunctions on Riemannian manifolds. This is a veryclassical idea. A key step in understanding properties of solutions of wave equationson manifolds will be to compute the types of distributions that include thefundamental solution of the wave operator in Minkowski space (d'Alembertian),

[??] = [partial derivative]2/[partial derivative]t2 - Δ, (1.1.1)

with

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII], (1.1.2)


being the Euclidean Laplacian on Rn.

In the next section we shall compute fundamental solutions for [??], which iscentral to our goal. Here, though, since it will serve for us as a good model, weshall compute the fundamental solution for Δ.

Recall that the fundamental solution of a partial differential operator P(D)= [summation] aa]partial derivative]a is a distribution E forwhich

P(D)E = δ0, (1.1.3)

where δ0 is the Dirac-delta distribution <δ0, f) = f(0), f [member of] S(Rn). Here α =(α1, ..., αn) is a multi-index of length[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII],and S(Rn) is the space of Schwartz class functions on Rn, whose dual isthe space of tempered distributions, S'(Rn). If φ [member of] S'(Rn), then <φ, f> denotes thevalue of φ acting on f. For later use, we shall also set α! = α1! α2! ··· α!.

Using the fundamental solution, one can solve the equation

P(D)u = F.

In fact, by (1.1.3), u = E * F satisfies

P(D)(E * F)= (P(D)E) * F = δ0 * F = F. (1.1.4)

Here "*" denotes convolution, initially defined for say f, g [member of] S(Rn) by

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]. (1.1.5)

and then extended to distributions by approximating them by functions. Also, youcan justify the first equality in (1.1.4) by using (1.1.5).

We shall assume basic facts about distributions. Besides S'(Rn), there is alsoD'(Rn), the dual space of C∞0 (Rn)(compactly supported C∞ functions), and[xi]'(Rn) (compactly supported distributions), which is the dual of the dual ofC∞( Rn). In the appendix we review the basic facts that we use here and elsewhere.The reader can also refer to many texts that cover the theory of distributions, including[37], [61] and [73].

Let us now derive a fundamental solution of Δ. Thus, we seek a E [member of] S' so that

ΔE = δ0.

Since both Δ and δ0 are invariant under rotations in Rn, it is natural to expectthat E also has this property. In other words, we expect that E(x) = f(|x|) = f(r),where r = |x| = [square root of [summation]nj=1 x2j . Assumingfor now that f is smooth for r > 0, since δ0is supported at the origin, we would have that

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII],

and therefore

f"(r) + n - 1/r f'(r) = 0, r = |x| > 0. (1.1.6)


The last equation suggests that E should be homogeneous of degree 2 - n. Recallthat u [member of] S' is homogeneous of degree σ if <u, fλ>= λσ, f [member of] S, where fλ(x)-n f(x/λ), λ > 0 is the λ L1-normalized dilate of f. This reasoning turns out tobe correct for n ≥ 3, but not for n = 2 since then 2 - n = 0 and constant functionsare the ones on R+ which are homogeneous of degree 0, and then cannot give usour fundamental solution of the Laplacian on R2. But since ln r also solves (1.1.6)when n = 2 and r2-n is a solution of the equation for n ≥ 3, perhaps

f(r) = anr2-n, n ≥ 3, and f(r) = an ln r, n = 2,


will work for the appropriate constants an.

Specifically, we claim that we can choose the an so that if

E(x) = anr2-n, n ≥ 3, and E(x) = an ln |x|, n = 2, (1.1.7)

then for g [member of] S we have

g(0) = <E, Δg>, g [member of] S, (1.1.8)


since g(0) = <δ0, g> = <ΔE, g> = <ΔE, Δg>, for all g [member of] Sif and only if δ0 = ΔE.

To verify (1.1.8), we shall need to use the divergence theorem. Note that ν =-x|x| is the outward unit normal for a point x on the complement of the sphereof radius ε > 0 centered at the origin. Thus, for n ≥ 3, if dσ denotes the induced

Lebesgue measure on this sphere,

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]


The first term in the right vanishes since, as noted above, Δ|x|-n+2 = 0, whenx ≠ 0. For a given ε > 0, the second term is bounded by

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]


and so its limit is 0. The last term is

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

which, as ε -> 0+, tends to

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]


Therefore, if An = |Sn-1| = ∫|x|=1dσ denotes the area of the unit sphere in Rn, wehave the desired identity (1.1.8) for n ≥ 3 if

an = -1/(n - 2)An, n ≥ 3. (1.1.9)

We leave it as an exercise for the reader that we also have (1.1.8) for n = 2 if weset

a2 = 1/2π. (1.1.10)


The minus signs in (1.1.9) are due to the fact that the Laplacian has a negativesymbol, -|[xi]|2.

Let us record what we have done in the following.

Theorem 1.1.1If n ≥ 3 and E(x) = an|x|2-n or n = 2 with E(x) = an ln |x|,with an de_ned by (1.1.9){(1.1.10), then E is a fundamental solution of Δ, i.e.,ΔE = δ0.

The fundamental solution for Δ, (1.1.7), that we have just computed is notunique since others are given by E(x) + h(x) if h(x) is a harmonic function, i.e.,Δh(x) = 0 for all x [member of] Rn. E, though, for n ≥ 3 is the unique fundamental solutionvanishing at in_nity.

Remark 1.1.2 To help motivate computations that we shall carry out in the nextchapter and throughout the text, let us see how the fundamental solution E for Δin Theorem 1.1.1 is pulled back via a linear bijection T : Rn -> Rn. If y = Tx then

Tt [partial derivative]/[partial derivative]y = [partial derivative]/[partial derivative]x

and so

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]. (1.1.11)


Then Δyu(y) = F(y) is equivalent to Δgu(Tx) = F(Tx). In other words, thepullback of Δy via T is Δg. If n ≥ 3,since an|y|2-n = an|x|2-ng if

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

we conclude that

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

if

|g| = det (gjk).


Note that, by a theorem of Jacobi (Sylvester's law of inertia), every symmetricpositive definite matrix gjk can be written in the above form, gjk = LLt, where L isreal and invertible. Consequently, if we take T = L-1 and TtT = (gjk) = (gjk)-1,then the above argument shows that if n ≥ 3, then

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

is a fundamental solution for [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII].

This decomposition gjk = LLt is not unique, however, it is if we require thatL is a lower triangular matrix with strictly positive diagonal entries (the Choleskydecomposition from linear algebra). We shall make this assumption in all suchfactorizations to follow. Note that the matrix L in this decomposition is, roughlyspeaking, the matrix analog of taking the square root of a positive number.

Let us conclude this section by reviewing one more equation involving the Laplacian.

As we pointed out before, we can use E to solve Laplace's equation Δu = F. Letus briey study one more important equation involving Δ, the Dirichlet problemfor R1+n = [0, ∞) × Rn, since it will also have some relevance in our calculation offundamental solutions for the d'Alembertian, [??] = [partial derivative]2t - Δ.

If (y, x) [member of] [0, ∞) × Rn, the Dirichlet problem for this upper half-space is to showthat for a given f [member of] S(Rn) on the boundary we can find a function u(y, x) that isharmonic in R1+n+ with boundary values f, i.e., a solution of

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]. (1.1.13)


By using the fact that in polar coordinates

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII],


where r = |x| and [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]is the induced Laplacian on Sn-1 (see § 3.4), one easilychecks that if

P(y, x) = y/(y2 + |x|2)(n+1)/2,

then

([partial derivative]2/[partial derivative]y2 + Δ) P(y, x) = 0,(y, x) [member of] (0, ∞) × Rn.


Therefore, if bn is a constant and f [member of] S,

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (1.1.14)


is harmonic in (0, ∞) × Rn, i.e., it satisfies the first part of (1.1.13). Since

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII],


we also have that as y -> 0+

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII],


provided that the constant bn is chosen so that

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII],


in other words

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII], (1.1.15)


with

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII], (1.1.16)


being Euler's gamma function. Thus we have shown that the Poisson integral off, (1.1.14), with bn given by (1.1.15) solves the Dirichlet problem for the upperhalf-space, (1.1.13). Note also that the constant bn in (1.1.15) is also given by theformula

bn = 2/An+1, (1.1.17)


where, as before, Ad = 2πd/2/Γ(d/2) denotes the areaof the unit sphere, Sd-1, in Rd.


1.2 FUNDAMENTAL SOLUTIONS OF THE D'ALEMBERTIAN

In this section we shall compute fundamental solutions for the d'Alembertian inR1+n. Thus we seek distributions E for which we have

[??]E = δ0,0(t, x), [??] = [partial derivative]2t- Δ, (t, x) [member of] R1+n. (1.2.1)


Here δ0,0 is the Dirac delta distribution centered at the origin in space-time.

Recall that the Lorentz transformations are the linear maps from R1+n to itselfpreserving the Lorentz form

Q(t, x) = t2 - |x|2, (1.2.2)


which is the natural quadratic form associated with [??}. Since both [??] and δ0,0 areinvariant under these transformations, we expect E to also enjoy this property.Thus, we expect it to be of the form E = f(t2 - |x|2) where f is some distribution.If we plug this into our equation (1.2.1) and we use the polar coordinates formulafor Δ, we can see that if E were of this form then we would have to have that

f"(ρ) + n + 1/2ρ f'(ρ) = 0, whenρ = t2 - |x|2 ≠ 0. (1.2.3)


From this we expect f to be homogeneous of degree (1 - n)=2. If

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII], (1.2.4)


denotes the Heaviside step function on R, then we can write down solutions of(1.2.3) with this homogeneity. Specifically, when n ≤ 3 the equation has the solution

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII],


Thus, we expect that for appropriate constants cn the following are fundamentalsolutions for [??] in spatial dimensions n = 1, 2, 3

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]. (1.2.5)


We added the factor H(t) since, as we shall see below when we solve the Cauchyproblem for [??], it is natural to want our fundamental solution to be supported inR1+n+ = [0, ∞) × Rn. When n = 3 our guessinvolves δ(t2 - |x|2), which is the Leraymeasure in R1+3 associated with the function t2 - |x|2 (see Theorem A.4.1 in theappendix).

Let us show that our guess is correct when n = 2, since this will serve as amodel for arguments to follow. Thus, we wish to see that c2 can be chosen so thatwhenever F [member of] S(R1+2) we have

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]. (1.2.6)


To simplify the integration by parts arguments, we note that we can regularize ourguess by extending it into the complex plane and taking limits. Specifically, insteadof truncating the distribution about its singularity as we did for the fundamentalsolution of the Laplacian, we shall use the fact that

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII],


due to the fact that [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] is real when |x|2 >t2, and ofpositive imaginary part if (t, x) is fixed with |x|2< t2 and ε > 0 small. Therefore,(1.2.6) is equivalent to showing that c2 can be chosen so that we always have

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]. (1.2.7)


In addition to motivating what is to follow, the advantage of (1.2.7) over (1.2.6) isthat the integration by parts arguments that we require are easy for the latter. Ifwe use the polar coordinates formula for the Laplacian it is not di_cult to checkthat

([partial derivative]2t - Δ)|x|2- (t + iε)2))-1/2 = 0, ε > 0, (t, x) [member of] R1+2,


and of course we also have that for ε > 0, Im (|x|2 - (t+iε)2)-1/2 = 0 when t = 0.Therefore, if we integrate by parts, we find that when ε > 0 we have

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]


(Continues...)
Excerpted from Hangzhou Lectures on Eigenfunctions of the Laplacian by Christopher D. Sogge. Copyright © 2014 Princeton University Press. Excerpted by permission of PRINCETON UNIVERSITY PRESS.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut
Diesen Artikel anzeigen

EUR 14,48 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

EUR 0,72 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780691160788: Hangzhou Lectures on Eigenfunctions of the Laplacian: 188 (Annals of Mathematics Studies, 188)

Vorgestellte Ausgabe

ISBN 10:  0691160783 ISBN 13:  9780691160788
Verlag: Princeton University Press, 2014
Softcover

Suchergebnisse für Hangzhou Lectures on Eigenfunctions of the Laplacian:...

Beispielbild für diese ISBN

Sogge, Christopher D.
ISBN 10: 0691160759 ISBN 13: 9780691160757
Gebraucht Hardcover

Anbieter: Labyrinth Books, Princeton, NJ, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Very Good. Artikel-Nr. 162307

Verkäufer kontaktieren

Gebraucht kaufen

EUR 79,83
Währung umrechnen
Versand: EUR 14,48
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Christopher D. Sogge
ISBN 10: 0691160759 ISBN 13: 9780691160757
Neu Hardcover

Anbieter: PBShop.store US, Wood Dale, IL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. WP-9780691160757

Verkäufer kontaktieren

Neu kaufen

EUR 164,66
Währung umrechnen
Versand: EUR 0,72
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Christopher D. Sogge
Verlag: PRINCETON UNIV PR, 2014
ISBN 10: 0691160759 ISBN 13: 9780691160757
Neu Hardcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. It shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic. Artikel-Nr. 594885371

Verkäufer kontaktieren

Neu kaufen

EUR 169,97
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Christopher D. Sogge
ISBN 10: 0691160759 ISBN 13: 9780691160757
Neu Hardcover

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. WP-9780691160757

Verkäufer kontaktieren

Neu kaufen

EUR 193,64
Währung umrechnen
Versand: EUR 4,54
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Sogge, Christopher D.
ISBN 10: 0691160759 ISBN 13: 9780691160757
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780691160757_new

Verkäufer kontaktieren

Neu kaufen

EUR 200,08
Währung umrechnen
Versand: EUR 5,74
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Christopher D Sogge
ISBN 10: 0691160759 ISBN 13: 9780691160757
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware - Contains the material taught during a series of lectures given at Zhejiang University in Hangzhou between 2010 and 2012. Artikel-Nr. 9780691160757

Verkäufer kontaktieren

Neu kaufen

EUR 207,69
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Christopher D. Sogge
ISBN 10: 0691160759 ISBN 13: 9780691160757
Neu Hardcover

Anbieter: Kennys Bookstore, Olney, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Based on lectures given at Zhejiang University in Hangzhou, China, and Johns Hopkins University, this book introduces eigenfunctions on Riemannian manifolds. It shows that there is quantum ergodicity of eigenfunctions if the geodesic flow is ergodic. Series: Annals of Mathematics Studies. Num Pages: 208 pages, 1 line illus. BIC Classification: PBKJ; PBMP. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 254 x 178 x 20. Weight in Grams: 628. . 2014. Hardcover. . . . . Books ship from the US and Ireland. Artikel-Nr. V9780691160757

Verkäufer kontaktieren

Neu kaufen

EUR 212,83
Währung umrechnen
Versand: EUR 1,87
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Sogge, Christopher D.
Verlag: Princeton Univ Pr, 2014
ISBN 10: 0691160759 ISBN 13: 9780691160757
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 256 pages. 10.25x7.25x0.75 inches. In Stock. Artikel-Nr. __0691160759

Verkäufer kontaktieren

Neu kaufen

EUR 245,03
Währung umrechnen
Versand: EUR 11,52
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb