Verwandte Artikel zu Mumford-Tate Groups and Domains: Their Geometry and...

Mumford-Tate Groups and Domains: Their Geometry and Arithmetic (AM-183) (Annals of Mathematics Studies, 183) - Softcover

 
9780691154251: Mumford-Tate Groups and Domains: Their Geometry and Arithmetic (AM-183) (Annals of Mathematics Studies, 183)

Inhaltsangabe

Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Containing basic theory and a wealth of new views and results, it will become an essential resource for graduate students and researchers.


Although Mumford-Tate groups can be defined for general structures, their theory and use to date has mainly been in the classical case of abelian varieties. While the book does examine this area, it focuses on the nonclassical case. The general theory turns out to be very rich, such as in the unexpected connections of finite dimensional and infinite dimensional representation theory of real, semisimple Lie groups. The authors give the complete classification of Hodge representations, a topic that should become a standard in the finite-dimensional representation theory of noncompact, real, semisimple Lie groups. They also indicate that in the future, a connection seems ready to be made between Lie groups that admit discrete series representations and the study of automorphic cohomology on quotients of Mumford-Tate domains by arithmetic groups. Bringing together complex geometry, representation theory, and arithmetic, this book opens up a fresh perspective on an important subject.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Mark Green is professor of mathematics at the University of California, Los Angeles and is Director Emeritus of the Institute for Pure and Applied Mathematics. Phillip A. Griffiths is Professor Emeritus of Mathematics and former director at the Institute for Advanced Study in Princeton. Matt Kerr is assistant professor of mathematics at Washington University in St. Louis.

Auszug. © Genehmigter Nachdruck. Alle Rechte vorbehalten.

Mumford-Tate Groups and Domains

Their Geometry and ArithmeticBy Mark Green Phillip Griffiths Matt Kerr

PRINCETON UNIVERSITY PRESS

Copyright © 2012 Princeton University Press
All right reserved.

ISBN: 978-0-691-15425-1

Contents

Introduction..................................................................................................................1I Mumford-Tate Groups.........................................................................................................28I.A Hodge structures..........................................................................................................28I.B Mumford-Tate groups.......................................................................................................32I.C Mixed Hodge structures and their Mumford-Tate groups......................................................................38II Period Domains and Mumford-Tate Domains....................................................................................45II.A Period domains and their compact duals...................................................................................45II.B Mumford-Tate domains and their compact duals.............................................................................55II.C Noether-Lefschetz loci in period domains.................................................................................61III The Mumford-Tate Group of a Variation of Hodge Structure..................................................................67III.A The structure theorem for variations of Hodge structures................................................................69III.B An application of Mumford-Tate groups...................................................................................78III.C Noether-Lefschetz loci and variations of Hodge structure................................................................81IV Hodge Representations and Hodge Domains....................................................................................85IV.A Part I: Hodge representations............................................................................................86IV.B The adjoint representation and characterization of which weights give faithful Hodge representations.....................109IV.C Examples: The classical groups...........................................................................................117IV.D Examples: The exceptional groups.........................................................................................126IV.E Characterization of Mumford-Tate groups..................................................................................132IV.F Hodge domains............................................................................................................149IV.G Mumford-Tate domains as particular homogeneous complex manifolds.........................................................168Appendix: Notation from the structure theory of semi-simple Lie algebras......................................................179V Hodge Structures with Complex Multiplication................................................................................187V.A Oriented number fields....................................................................................................189V.B Hodge structures with special endomorphisms...............................................................................193V.C A categorical equivalence.................................................................................................196V.D Polarization and Mumford-Tate groups......................................................................................198V.E An extended example.......................................................................................................202V.F Proofs of Propositions V.D.4 and V.D.5 in the Galois case.................................................................209VI Arithmetic Aspects of Mumford-Tate Domains.................................................................................213VI.A Groups stabilizing subsets of D..........................................................................................215VI.B Decomposition of Noether-Lefschetz into Hodge orientations...............................................................219VI.C Weyl groups and permutations of Hodge orientations.......................................................................231VI.D Galois groups and fields of definition...................................................................................234Appendix: CM points in unitary Mumford-Tate domains...........................................................................239VII Classification of Mumford-Tate Subdomains.................................................................................240VII.A A general algorithm.....................................................................................................240VII.B Classification of some CM-Hodge structures..............................................................................243VII.C Determination of sub-Hodge-Lie-algebras.................................................................................246VII.D Existence of domains of type IV(f)......................................................................................251VII.E Characterization of domains of type IV(a) and IV(f).....................................................................253VII.F Completion of the classification for weight 3...........................................................................256VII.G The weight 1 case.......................................................................................................260VII.H Algebro-geometric examples for the Noether-Lefschetzlocus types.........................................................265VIII Arithmetic of Period Maps of Geometric Origin............................................................................269VIII.A Behavior of fields of definition under the period map — image and preimage.......................................270VIII.B Existence and density of CM points in motivic VHS......................................................................275Bibliography..................................................................................................................277Index.........................................................................................................................287

Chapter One

Mumford-Tate Groups

I.A HODGE STRUCTURES

Let V be a Q-vector space. For k = R or C we set Vk = V [cross product] k and GL(V)k = GL(Vk). There are three definitions of a Hodge structure of weight n, here given in historical order. In the first two definitions, we assume that n is positive and the p, q's in the definitions are non-negative. In the third definition, which will be the one used primarily in this monograph, n and p, q are arbitrary integers.

Definition (i): A Hodge structure of weight n is given by a Hodge decomposition

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII].

Definition (ii): A Hodge structure of weight n is given by a Hodge filtration

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII].

These are equivalent by

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII].

For the third definition we shall use the Deligne torus

S =: ResC/R Gm,C

where "Res" denotes the restriction of scalars à la Weil. A concrete, and in some ways more useful, description of S will be given below. It is an R-algebraic group whose real points are

S(R) [congruent to] C*.

Definition (iii): A Hodge structure of weight n is given by a homomorphism of R-algebraic groups

(I.A.1) [??] : S(R) → GL(V)(R)

such that for r [member of] R* [subset] S(R)

[??](r) = rn idV.

This is equivalent to definition (i) by

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII].

In other words, the action of [??](z) on VC decomposes into eigenspaces Vp,q as above, and this action is defined over R and is therefore given by a homomorphism (I.A.1). The Weil operator C is defined by

ITLITL = [??](i)

and thus C = ip-q on Vp,q.

The alternate way one may formulate definition (iii) is the following: For k = Q, R or C set

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII].

Then

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

and U(R) [congruent to] S1 is the maximal compact subgroup of S(R). We set

φ = [??]|U(R).

Then (I.A.1) gives

(I.A.2) φ : U(R) → SL(V)(R)

where

φ(z)v = zp-qv; v [member of] Vp,q.

This formulation, which is most useful when studying polarized Hodge structures, determines the Hodge decomposition but not the weight, for which one needs the scaling factor.

The Tate structure Q(1) is defined by V = 2πiQ [subset] C and

[??](z) = z-1[bar.z]-1.

Thus V is of pure Hodge type (-1, -1). It is also sometimes referred to as the Hodge-Tate structure. We denote by Q(p) the pth tensor power of Q(1) and note that Q(-1) [congruent to] Q(1).

In this paper we shall use both the (I.A.1) and (I.A.2) versions of definition (iii), and therefore shall denote a Hodge structure by (V, [??]) and (V, φ) or, when no confusion is likely, simply by V[??] and Vφ.

Remark: In the literature there are two sign conventions concerning the weight. Ours is this: For a complex torus X = Cg/[conjunction] where Cg has coordinates z1, ..., zg and [conjunction] [congruent to] = Z2g is a lattice, a differential form

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

defines a class in HnDR(X) [congruent to] Hn(X,C). Under a homothety zi → λzi, λ [member of] R*, we have

Ψ → λnΨ.

Thus, we will say that the Hodge structure on Hn(X,Q) given by specifying that Hn(X,C)(p,q) is represented by Ψ as above where |I| = p, |J| = q has weight n. In [Mo1] the weight, as defined there and following Deligne's convention [DMOS], is -n.

For later use it will be convenient to extend the action of φ to S(C) [congruent to] C* × C* as given above where

[??](z,w) = zpwq on Vp,q.

This agrees with the above via S(R) [subset] S(C) given by z → (z, [bar.z]). Note that U(C) [congruent to] C*, and the circle U(R) [congruent to] S1 in particular maps into S(C) by z → (z, z-1). The diagonal inclusion Gm [subset] S maps C* [congruent to] Gm(C) (and R* [congruent to] Gm(R)) into C* × C* by α [??] (α,α).

Hodge structures of weight n are sometimes called pure Hodge structures, and the term Hodge structure then refers to a direct sum of pure Hodge structures.

Definition: A Hodge structure is given by a Q-vector space and a representation

[??] : S(R) → GL(VR)

with the following property: the restriction of [??] to Gm should be a morphism of Q-algebraic groups, yielding a homomorphism of rational points

[??] : Q* → GL(V).

Here, Gm [congruent to] Q* is the subgroup [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] of S(Q). Over Q we have the weight space decomposition

V = [direct sum]V(n)

where [??](r) = rn on V(n), and over C we have

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

where φ(z) = zp[bar.z]q, p + q = n, on VC(n)p,q

Hodge structures admit the standard operations of linear algebra, in particular [cross product] and Hom. We denote by [??] the dual vector space of V and denote by [??]φ the Hodge structure of weight -n induced on [??] by a weight n Hodge structure Vφ.

A sub-Hodge structure is given by a Q-vector subspace U [subset]_V such that

[??](S(R)) : U(R) → U(R);

i.e., the action of [??](S(R)) leaves U(R) invariant. When one decomposes V into a direct sum of pure Hodge structures, there will be a corresponding induced decomposition of U as a direct sum of pure sub-Hodge structures.

Polarizations are most conveniently defined using definition (ii). Let

Q : V [cross product] V → Q

be a non-degenerate form with

Q(u, v) = (-1)nQ(v, u) u, v [member of] V.

We shall denote by G = Aut(V,Q) the Q-algebraic group associated to (V,Q), and by G(R),G(C) the real and complex points of G.

Definition: A polarized Hodge structure of weight n is given by (V, Q, φ) where φ is as in (I.A.2) and where the Hodge-Riemann bilinear relations

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

are satisfied.

The bilinear relations are equivalent to

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII].

In this work we shall mainly but not exclusively be concerned with polarized Hodge structures, which is why we shall frequently work with φ instead of [??].

When working with Hodge structures arising from geometry there will usually be given a lattice HZ [subset] HR such that H = HZ [cross product] Q.

I.B MUMFORD-TATE GROUPS

Mumford-Tate groups, sometimes abbreviated MT-groups, are the natural symmetry groups that encode information about the Q-structure and the Hodge structure.

Definitions: (i) The Mumford-Tate group M[??] associated to a Hodge structure (V, [??]) is the Q-algebraic closure of

[??] : S(R) → GL(VR).

(ii) The Mumford-Tate group Mφ associated to a Hodge structure (V, φ) of weight n is the Q-algebraic closure of

φ : U(R) → SL(VR).

Thus

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII],

and in each case the Mumford-Tate groups are the intersection of the Q-algebraic subgroups of GL(V) whose real points contain [??](S(R)), respectively φ(U(R)). In the literature, Mφ is usually called the special Mumford-Tate group or "Hodge group." Because of the centrality of Mφ in this monograph, and because the term "Hodge group" will be used in Chapter IV in another context, we will simply refer to both M[??] and Mφ as Mumford-Tate groups and let the subscripts e' and ' designate which one we are referring to.

We may define M[??] and Mφ for a general Hodge structure [??] : S(R) → GL(VR) (i.e., a Q-direct sum of pure weight Hodge structures) in exactly the same way. As long as (V, [??]) is not pure of weight zero, the Q-closure definition implies that

M[??] is the semi-direct product of its subgroups Mφ and Gm,Q.

If (V, Q, φ) is a weight n polarized Hodge structure, then φ preserves Q [member of] [??] [cross product] [??] and thus Mφ [subset] G = Aut(V,Q).

We shall now formulate and prove the basic property for Mφ in the pure case; subsequently we shall do the same for M[??]. In each case the basic property is an answer to the question:

What are the defining equations for the Q-algebraic group Mφ, respectively M[??]?

For this we let

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

be the tensor spaces and tensor algebra of V. Recall that for a pure Hodge structure of even weight n = 2p, the Hodge classes are defined by

Hg(Vφ) = V [intersection] Vp,p.

Setting Hgk,lφ = Hg(Tk,lφ), we then have

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

consisting of the Hodge classes in Tk,l and the algebra of Hodge tensors in T[??],[??].

(I.B.1) BASIC PROPERTY (I): Mφ is the subgroup of G fixing Hg[??],[??]φ.

This result provides our answer to the previous question. The proof will be given in several steps.

Step one: If t [member of] HgITL[k,l]ITLφ, then Mφ fixes t.

Proof. Since t is rational, fixing it defines a Q-algebraic subgroup G(t) of GL(V). If t is of Hodge type (p, p), where n(k-l) = 2p, then φ(z)t = zp-pt. It follows that

φ(U(R)) [subset or equal to] G(t)(R),

and by the minimality of Mφ we conclude that Mφ [subset] G(t).

Step two: If Mφ stabilizes the line Qt spanned by t [member of] Tk,l, then t [member of] Hgk,lφ is a Hodge tensor.

Proof. Since φ(U(C)) [subset] Mφ(C), if Mφ stabilizes Qt, then t will be an eigenvector for φ(z) for a general z [member of] U(R). Hence t is of pure Hodge type, and since it is rational it must be a Hodge tensor.

We then have

Chevalley's theorem: Let M be a closed Q-algebraic subgroup of GL(V). Then M is the stabilizer of a line L in a finite direct sum [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII].

A proof of this result will be given below.

Completion of the proof of (I.B.1). Denoting by Fix(*) the Q-algebraic subgroup of GL(V) defined by fixing pointwise a set * of tensors in T[??],[??], by step one we have

Mφ [subset or equal to] Fix(Hg[??],[??]φ).

For the reverse inclusion, by Chevalley's theorem there exists

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

such that Mφ [subset] GL(V) is defined by stabilizing the line Qτ. In particular, Mφ stabilizes each line [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] and by step two each ti is Hodge. Thus

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII].

Proof of chevalley's theorem. From the open embedding GL(V) [??] End(V) of algebraic varieties comes the injection of coordinate rings

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

The action of GL(V) on itself by conjugation extends to the adjoint action on End(V), and these induce compatible actions on the coordinate rings that, moreover, are compatible with the action of GL(V) on [direct sum]Tk,k. Write S := Q[End(V)]. If we choose a basis for V, we may think of S as polynomials P(Xij) in the matrix entries of X [member of] End(V).

The stabilizer of the ideal

I(M) [subset or equal to] Q[GL(V)]

of M, viewed as a subvariety of GL(V), is the largest algebraic subgroup contained in the Zariski closure of M. But since M is Zariski closed, and a subgroup, the stabilizer is just M. Note that S and

I := I(M) [intersection] S

inherit a nonnegative GL(V)-invariant grading from the above injection of coordinate rings, and M is also the subgroup of GL(V) stabilizing I in S. This follows from the above because Q[GL(V)] = Q[End(V)][1/det] and det is non-vanishing on M.

Since M is an algebraic variety in GL(V), I(M) is finitely generated; the same goes for I, the ideal of the Zariski closure of M in End(V). Let {Pi} [subset] I≤k be a generating set for I, and set d := dim(I≤k). Since I≤k generates I and the action is compatible with products, M is the stabilizer of I≤k in S≤k, and this is, by linear algebra, the same as the stabilizer of

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]

where [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII].

Remark: The basic idea behind this argument is very simple:

(i) If M is a Q-algebraic group acting on a finite dimensional Q-vector space W, then stabilizing a subspace U [subset] W is the same as stabilizing the line [conjunction]dU [subset] [conjunction]dW where dim U = d;

(ii) In the coordinate ring Q[Xij], M is exactly the stabilizer of the ideal that defines M;

(iii) By finite generation, (ii) will hold on a finite dimensional subspace of Q[Xij].

(Continues...)


Excerpted from Mumford-Tate Groups and Domainsby Mark Green Phillip Griffiths Matt Kerr Copyright © 2012 by Princeton University Press. Excerpted by permission of PRINCETON UNIVERSITY PRESS. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 3,83 für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780691154244: Mumford-Tate Groups and Domains: Their Geometry and Arithmetic (AM-183) (Annals of Mathematics Studies, 183)

Vorgestellte Ausgabe

ISBN 10:  0691154244 ISBN 13:  9780691154244
Verlag: Princeton University Press, 2012
Hardcover

Suchergebnisse für Mumford-Tate Groups and Domains: Their Geometry and...

Beispielbild für diese ISBN

Green, Mark, Griffiths, Phillip A., Kerr, Matt
ISBN 10: 0691154252 ISBN 13: 9780691154251
Neu Softcover

Anbieter: Labyrinth Books, Princeton, NJ, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Artikel-Nr. 145522

Verkäufer kontaktieren

Neu kaufen

EUR 44,75
Währung umrechnen
Versand: EUR 3,83
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 13 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Mark Green
ISBN 10: 0691154252 ISBN 13: 9780691154251
Neu PAP

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. GB-9780691154251

Verkäufer kontaktieren

Neu kaufen

EUR 92,01
Währung umrechnen
Versand: EUR 5,80
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Green, Mark; Griffiths, Phillip A.; Kerr, Matt
ISBN 10: 0691154252 ISBN 13: 9780691154251
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780691154251_new

Verkäufer kontaktieren

Neu kaufen

EUR 97,98
Währung umrechnen
Versand: EUR 13,84
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

GREEN, MARK
ISBN 10: 0691154252 ISBN 13: 9780691154251
Neu Softcover

Anbieter: Speedyhen, London, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: NEW. Artikel-Nr. NW9780691154251

Verkäufer kontaktieren

Neu kaufen

EUR 81,81
Währung umrechnen
Versand: EUR 47,37
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Mark Green|Phillip Griffiths|Matt Kerr|Phillip A. Griffiths|Matt Kerr
ISBN 10: 0691154252 ISBN 13: 9780691154251
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book provides a comprehensive exploration of Mumford-Tate groups and domains.Mumford-Tate group. Artikel-Nr. 594884954

Verkäufer kontaktieren

Neu kaufen

EUR 105,53
Währung umrechnen
Versand: EUR 48,99
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Mark Green
ISBN 10: 0691154252 ISBN 13: 9780691154251
Neu Softcover

Anbieter: Kennys Bookstore, Olney, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book provides a comprehensive exploration of Mumford-Tate groups and domains. Series: Annals of Mathematics Studies. Num Pages: 288 pages, 40 line illus. 6 tables. BIC Classification: PBG; PBKB; PBKD; PBMW. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 252 x 174 x 15. Weight in Grams: 518. . 2012. Paperback. . . . . Books ship from the US and Ireland. Artikel-Nr. V9780691154251

Verkäufer kontaktieren

Neu kaufen

EUR 148,90
Währung umrechnen
Versand: EUR 8,95
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Mark Green
ISBN 10: 0691154252 ISBN 13: 9780691154251
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware - Mumford-Tate groups are the fundamental symmetry groups of Hodge theory, a subject which rests at the center of contemporary complex algebraic geometry. This book is the first comprehensive exploration of Mumford-Tate groups and domains. Containing basic theory and a wealth of new views and results, it will become an essential resource for graduate students and researchers. Artikel-Nr. 9780691154251

Verkäufer kontaktieren

Neu kaufen

EUR 116,38
Währung umrechnen
Versand: EUR 62,61
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Green, Mark/ Griffiths, Phillip A./ Kerr, Matt
Verlag: Princeton Univ Pr, 2012
ISBN 10: 0691154252 ISBN 13: 9780691154251
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 256 pages. 10.00x7.00x0.75 inches. In Stock. Artikel-Nr. x-0691154252

Verkäufer kontaktieren

Neu kaufen

EUR 160,06
Währung umrechnen
Versand: EUR 28,88
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb