Verwandte Artikel zu Planetary Climates: 9 (Princeton Primers in Climate)

Planetary Climates: 9 (Princeton Primers in Climate) - Softcover

 
9780691145051: Planetary Climates: 9 (Princeton Primers in Climate)

Inhaltsangabe

This concise, sophisticated introduction to planetary climates explains the global physical and chemical processes that determine climate on any planet or major planetary satellite--from Mercury to Neptune and even large moons such as Saturn's Titan. Although the climates of other worlds are extremely diverse, the chemical and physical processes that shape their dynamics are the same. As this book makes clear, the better we can understand how various planetary climates formed and evolved, the better we can understand Earth's climate history and future.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Andrew P. Ingersoll, the Earle C. Anthony Professor of Planetary Science at the California Institute of Technology, is an expert on the weather and climate of Earth and the other planets.

Von der hinteren Coverseite

"In forty years of teaching similar material to undergraduates, I have not seen a better book. The subject is the science that underlies climate. Each chapter focuses in depth on one or two important concepts. Mathematics is avoided when not needed. But Ingersoll is not compromising. He gives full explanations of even difficult concepts, such as vorticity. There is no political material here, just carefully presented science. This is the book to assign prior to entering policy debates in an undergraduate course."--Peter J. Gierasch, Cornell University

"This clear and engaging book presents a sweeping tour of our solar system's diverse planetary atmospheres, providing a rich foundation on their structure, composition, circulation, climate, and long-term evolution. Explaining current knowledge, physical and chemical mechanisms, and unanswered questions, the book brings the reader to the cutting edge of the field. Highly recommended."--Adam Showman, University of Arizona

Auszug. © Genehmigter Nachdruck. Alle Rechte vorbehalten.

PLANETARY CLIMATES

By Andrew P. Ingersoll

PRINCETON UNIVERSITY PRESS

Copyright © 2013 Princeton University Press
All rights reserved.
ISBN: 978-0-691-14505-1

Contents

1 Introduction: The Diversity of Planetary Climates........................1
2 Venus: Atmospheric Evolution.............................................7
3 Venus: Energy Transport and Winds........................................26
4 Mars: Long-Term Climate Change...........................................74
5 Mars: The Present Era....................................................92
6 Titan, Moons, and Small Planets..........................................111
7 Jupiter the Gas Giant....................................................136
8 Jupiter Winds and Weather................................................162
9 Saturn...................................................................202
10 Uranus, Neptune, and Exoplanets.........................................223
11 Conclusion..............................................................240
Glossary...................................................................247
Notes......................................................................257
Further Reading............................................................271
Index......................................................................273


CHAPTER 1

INTRODUCTION:THE DIVERSITY OFPLANETARY CLIMATES


Climate is the average weather—long-termproperties of the atmosphere like temperature, wind,cloudiness, and precipitation, and properties of the surfacelike snow, glaciers, rivers, and oceans. Earth has awide range of climates, but the range among the planetsis much greater. Studying the climates of other planetshelps us understand the basic physical processes in alarger context. One learns which factors are important insetting the climate and how they interact.

Earth is the only planet with water in all three phases—solid,liquid, and gas. Mars has plenty of water, but it's almostall locked up in the polar caps as ice. There's a smallamount of water vapor in its atmosphere but no standingbodies of liquid water. Venus has a small amount ofwater vapor in its atmosphere, but the Venus surface ishot enough to melt lead and is too hot for solid or liquidwater. Thus by human standards, Venus is too hot andMars is too cold. The classic "habitable zone," whereEarth resides and life evolved, lies in between.

Things get strange in the outer solar system. Titan, amoon of Saturn, has rivers and lakes, but they're madeof methane, which we know as natural gas. The giantplanets have no solid or liquid surfaces, so you wouldneed a balloon or an airplane to visit them. The climatesthere range from terribly cold at the tops of the cloudsto scorching hot in the gaseous interiors, with warm,wet, rainy layers in between. Some of the moons in theouter solar system have oceans of liquid water beneaththeir icy crusts. The solar system's habitable zone couldbe an archipelago that includes these icy moons, but thecrusts could be tens of kilometers thick. Their subsurfaceoceans are beyond the scope of this book.

The diversity of planetary climates is huge, but thebasic ingredients are the same—the five elements H,O, C, N, and S. A fundamental difference is the relativeabundance of hydrogen and oxygen. In the innersolar system—Earth, Mars, and Venus—the elementsare combined into compounds like oxygen (O2), carbondioxide (CO2), nitrogen (N2), sulfur dioxide (SO2), andwater (H2O). In the outer solar system—Jupiter, Saturn,Uranus, and Neptune—the elements are combined intocompounds like methane (CH4), ammonia (NH3), hydrogensulfide (H2S), and water. Saturn's moon Titan hasan atmosphere of nitrogen and methane, and Jupiter'smoon Io has an atmosphere of sulfur dioxide. The compositionof a planetary atmosphere has a profound effecton its climate, yet many of the processes that control thecomposition are poorly understood.

The underlying physical processes are the same aswell. Temperature is a crucial variable, and it is largelybut not entirely controlled by distance to the Sun. Thetemperature of the planet adjusts to maintain thermalequilibrium—to keep the amount of outgoing infraredradiation equal to the amount of absorbed sunlight.

Clouds and ice reflect sunlight, leading to cooler temperatures,but clouds also block outgoing infrared radiation,leading to warmer temperatures down below. Manygases like water vapor, carbon dioxide, methane, ammonia,and sulfur dioxide do the same. They are calledgreenhouse gases, although an actual greenhouse trapsthe warm air inside by blocking the wind outside. Anatmosphere has nothing outside, just space, so the greenhousegases trap heat by blocking the infrared radiationto space. Venus has clouds of sulfuric acid and a massivecarbon dioxide atmosphere that together reflect 75% ofthe incident sunlight. Yet enough sunlight reaches thesurface, and enough of the outgoing radiation is blocked,to make the surface of Venus hotter than any other surfacein the solar system. Gases like nitrogen (N2) andoxygen (O2) do not block infrared radiation and are notsignificant contributors to the greenhouse effect.

The wind speeds on other planets defy intuition. Athigh altitudes on Venus, the winds blow two or threetimes faster than the jet streams of Earth, which blowat hurricane force although they usually don't touch theground. In fact, Earth has the slowest winds of any planetin the solar system. Paradoxically, wind speed seemsto increase with distance from the Sun. Jupiter has jetstreams that blow three times faster than those on Earth,and Neptune has jet streams that blow ten times faster.

The weather is otherworldly. At least it is unlikewhat we are used to on Earth. Mars has two kinds ofclouds—water and carbon dioxide. And Jupiter has threekinds—water, ammonia, and a compound of ammoniaand hydrogen sulfide. Mars has dust storms that occasionallyenshroud the planet. Jupiter and Saturn haveno oceans and no solid surfaces, but they have lightningstorms and rain clouds that dwarf the largest thunderstormson Earth. Saturn stores its energy for decades andthen erupts into a giant thunderstorm that sends out atail that wraps around the planet.

Many of these processes are not well understood.Our Earth-based experience has proved inadequate toprepare us for the climates we have discovered on otherplanets. The planets have surprised us, and scientistsoften emerge from a planetary encounter with morequestions than answers. But surprises tell us somethingnew, and new questions lead to new approaches andgreater understanding. If we knew what we would findevery time a spacecraft visited a planet, then we wouldn'tbe learning anything. In the chapters that follow, we willsee how much we know and don't know about climate,using the planets to provide a broader context than whatwe experience on Earth.

We will visit the planets in order of distance from theSun, starting with Venus and ending with planets aroundother stars. Most planets get one or two chapters. Usuallythe first chapter is more descriptive—what the planet islike and how it got that way. The second chapter is moremechanistic—describing the physical processes thatcontrol the present climate of that planet. The chaptersare augmented by sections called boxes, which containequations and constitute a brief textbook-type introductionto climate science.

Chapter 2 is about the greenhouse effect and climateevolution, for which Venus is the prime example. Chapter3 is about basic physical processes like convection,radiation, Hadley cells, and the accompanying winds,with Venus as the laboratory. Mars illustrates the "faintyoung Sun paradox," in which evidence of ancient rivers(chapter 4) contradicts results from astronomy that theSun's output in the first billion years of the solar systemwas 70% of its current value. Mars also allows us to talkabout the fundamental physical processes of condensationand evaporation (chapter 5), since exchanges ofwater vapor and CO2 between the atmosphere and polarice determine the climate of Mars. Titan allows us tostudy a hydrologic cycle in which the working fluid isnot water (sections 6.1–6.3). Titan is an evolving atmosphere,close to the lower size limit of objects that canretain a sizeable atmosphere over geologic time (section6.4). Below this limit, the atmospheres are tenuous andtransient (section 6.5).

Jupiter is almost a cooled-down piece of the Sun, butthe departures from solar composition tell a crucial storyabout how the solar system formed (chapter 7). The giantplanets are laboratories for studying the effect of planetaryrotation on climate (chapter 8), including the high-speedjet streams and storms that last for centuries. Chapter 9 isabout Saturn, a close relative of Jupiter, although the differencesare substantial and hard to understand. Uranusspins on its side, which allows us to compare sunlightand rotation for their effects on weather patterns (section10.1). Neptune has the strongest winds of any planet(section 10.2), and we speculate about why this might be.The field of exoplanets—planets around other stars (section10.3) is full of new discoveries, and we only give abrief introduction to this rapidly expanding field.

This book was written for a variety of readers. One is anundergraduate science major or a nonspecialist scientistwho knows little about planets or climate. This reader willlearn a lot about the planets and something about the fundamentalphysical processes that control climate. We gofairly deep into the physical processes, but the emphasis ison intuitive understanding. We touch on convection, radiation,atmospheric escape, evaporation, condensation,atmospheric chemistry, and the dynamics of rotating fluids.There are good textbooks and popular science bookson planetary science and there are multiauthoredspecialized books about individual planets. Thereare also good textbooks on atmospheric science.Therefore another potential reader is a student of atmosphericscience who has learned the relevant equationsand wants to step back and think about the fundamentalprocesses in a broader planetary context. Finally, thereare the climate specialists and planetary specialists whowant to know about the mysteries and unsolved problemsin planetary climate. Such readers might solve some ofthe many mysteries about planetary climates and therebyhelp us understand climate in general.

CHAPTER 2

VENUS:ATMOSPHERIC EVOLUTION


2.1 EARTH'S SISTER PLANET GONE WRONG

Until the beginning of the space age, Venus wasconsidered Earth's sister planet. In terms of size, mass, anddistance from the Sun, it is the most Earth-like planet, andpeople assumed it had an Earth-like climate—a humid atmosphere,liquid water, and warm temperatures beneathits clouds, which were supposed to be made of condensedwater. This benign picture came apart in the 1960s whenradio telescopes peering through the clouds measuredbrightness temperatures close to 700 K. Also in the 1960s,the angular distribution of reflected sunlight—the existenceof a rainbow in the clouds—revealed that they weremade of sulfuric acid droplets. The Soviet Venera probesshowed that the atmosphere was a massive reservoir ofcarbon dioxide, exceeding the reservoir of limestonerocks on Earth. The U.S. Pioneer Venus radar imagesshowed a moderately cratered volcanic landscape withno trace of plate tectonics.

We now know that Venus mostly has an Earth-likeinventory of volatiles—the basic ingredients of atmospheresand oceans—but with one glaring exception,and that is water. Earth's ocean is three hundred times asmassive as its atmosphere. Water is more abundant thanall the other volatiles combined, including carbon dioxide,nitrogen, and oxygen. In contrast, Venus has only asmall amount of water, and it is all in the atmosphere.Relative to the mass of the planet, the amount of wateron Venus is ~4 × 10-6 times the amount on Earth. Thisraises some fundamental questions: Was Venus born dry,and if so, how? Or, was Venus born with an Earth-likeinventory of water that it somehow lost? These questionsare the theme of this chapter. In section 2.1 we reviewthe volatile inventories for the terrestrial planets.In section 2.2 we discuss the possibility that Venus losta large amount of water, perhaps an ocean's worth, overgeologic time. The evidence is found in the isotopes ofhydrogen—the anomalously high deuterium to hydrogenratio, which could come about when the lighter hydrogenescaped the planet's gravity at a higher rate thanthe heavier deuterium. Finally, in section 2.3 we discusshow Venus might have lost its ocean while Earth heldon. The effect of extra sunlight on Venus is amplifiedby feedback—the warmer it gets, the more water vaporenters the atmosphere, which makes it even warmer becausewater vapor is a potent greenhouse gas. Somewherebetween Earth and Venus, the theory goes, an Earth-likeplanet cannot exist. Inside this critical zone, the oceansboil away and are eventually lost to space.

Venus comes closer to the Earth than any otherplanet—its orbit around the Sun is 72% the size ofEarth's orbit. The planet itself is 95% the size of Earth,and its surface gravity is 90% of Earth's. The bulk densitiesare nearly the same. The density of a terrestrialplanet tells us about the proportions of rock and metalinside. The metal, mostly iron, is denser and resides inthe core. The rocks are oxidized metals, mostly silicon,magnesium, and iron combined with oxygen, and havedensities one-third that of the metallic core. From thebulk densities, one infers that the mass of rock relativeto the mass of metal is about 2.2 for Earth and about 3.0for Venus. Thus Venus and Earth are rocky terrestrialplanets with similar amounts of metals locked away intheir metallic cores.

Given these similarities in size, distance from the Sun,and bulk composition, one might expect the two planetswould have similar climates and similar inventories ofthe lighter elements H, O, C, N, and S. These elementsare the main ingredients of atmospheres, oceans, andice sheets, which are the basic elements of climate. Insome ways this expectation is correct, but in other waysit fails miserably. Venus has a small amount of water, allin vapor form, a massive atmosphere of carbon dioxide,and a surface temperature of ~730 K (457 °C , 855 °F).Clouds of sulfuric acid enshroud the planet (fig. 2.1). Thepressure at the ground is 92 bars, or 92 times the Earth'ssea-level pressure. Since pressure (force per unit area) isthe weight of overlying atmosphere (gravity g times massper unit area), the mass per unit area of the atmosphereof Venus is about 100 times that of Earth when one takesthe lower gravity of Venus into account. Table 2.1 givesthe volatile inventories of Venus, Earth, and Mars.

Earth actually has a lot of carbon dioxide, but it'snot in the atmosphere. Instead it resides mostly inlimestone—calcium and magnesium sediments withchemical formulas like CaCO3 and CaMg(CO3)2. Thesecarbonate compounds have accumulated over the lifeof the Earth when igneous rocks (rocks formed from amelt) containing calcium and magnesium have weathered—grounddown and dissolved—and then combinedwith carbon dioxide in the oceans where they precipitateout. Calcium is found in many kinds of igneous rock, buta simple example is CaSiO3. Dissolved in water, CO2 is aweak acid, which helps to dissolve the rock. The net resultis that the CaSiO3 combines with CO2 to make SiO2(silica) and CaCO3 (calcium carbonate).

The silica precipitates out as quartz and as hydratedsilica (clay). The calcium carbonate precipitates out aslimestone. As CO2 is released from inside the Earth involcanoes and fumaroles (volcanic vents), and as silicaterocks are weathered, the limestone accumulates. Biologicalprocesses aid the precipitation. Some plankton andother species use calcium carbonate in their shells, andmuch of the limestone deposits on Earth are derived fromthe shells of marine organisms. Other plankton speciesuse silica in their shells. When one adds up the limestonedeposits on Earth, the mass of CO2 sequestered is60 to 180 times the total mass of Earth's atmosphere. Thelarger number includes estimates of carbonates that weresubducted into the mantle, and it is highly uncertain. Inany case the mass of CO2 in carbonate rocks on Earthis comparable to—within a factor of two—the mass ofCO2 in the atmosphere of Venus. Formation of carbonatesdepends on liquid water, so the fact that the CO2on Venus is in the atmosphere and the CO2 on Earth isin carbonate rocks is probably tied to the question ofwhy only Earth has oceans. That question hinges on thegreenhouse effect and climate, as we shall see.

Before discussing water, let us discuss two other gaseswhose abundances are comparable on Earth and Venus.The first is nitrogen (N2), which makes up 3.5% of Venus's92-bar atmosphere and 78% of Earth's 1-bar atmosphere.These percentages refer to the numbers of molecules, nottheir masses. The ratio of the atmospheric masses of nitrogenon Venus and Earth is 3.0, which means they arecomparable. The other gas is argon, which, on Earth atleast, is mostly 40Ar. The number 40 refers to the mass ofthe nucleus, which is controlled by the number of protonsand neutrons. 40Ar is produced from the decay ofradioactive potassium, 40K. The amount of 40Ar in a terrestrialplanet atmosphere is a measure of the amountof radioactive potassium in the crust and the degreeof outgassing—the extent to which the gaseous argonis released from the rock and conveyed to the surface.Relative to the planet's mass, the ratio of the mass of 40Arin the atmosphere of Venus to that of the Earth is ~0.5,which means the amount of outgassing on the two planetsis comparable as well.


(Continues...)
Excerpted from PLANETARY CLIMATES by Andrew P. Ingersoll. Copyright © 2013 Princeton University Press. Excerpted by permission of PRINCETON UNIVERSITY PRESS.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut
The book has been read, but is...
Diesen Artikel anzeigen

EUR 6,45 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

EUR 7,49 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780691145044: Planetary Climates: 9 (Princeton Primers in Climate)

Vorgestellte Ausgabe

ISBN 10:  0691145040 ISBN 13:  9780691145044
Verlag: Princeton University Press, 2013
Hardcover

Suchergebnisse für Planetary Climates: 9 (Princeton Primers in Climate)

Beispielbild für diese ISBN

Ingersoll, Andrew
ISBN 10: 0691145059 ISBN 13: 9780691145051
Gebraucht Paperback

Anbieter: WorldofBooks, Goring-By-Sea, WS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Artikel-Nr. GOR011852970

Verkäufer kontaktieren

Gebraucht kaufen

EUR 8,26
Währung umrechnen
Versand: EUR 6,45
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Ingersoll, Andrew
ISBN 10: 0691145059 ISBN 13: 9780691145051
Gebraucht Softcover

Anbieter: Phatpocket Limited, Waltham Abbey, HERTS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Artikel-Nr. Z1-C-032-02096

Verkäufer kontaktieren

Gebraucht kaufen

EUR 6,58
Währung umrechnen
Versand: EUR 12,26
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Ingersoll, Andrew:
ISBN 10: 0691145059 ISBN 13: 9780691145051
Gebraucht Softcover

Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Softcover. Course Book. 287 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library with stamp and library-signature. GOOD condition, some traces of use. w04996 9780691145051 Sprache: Englisch Gewicht in Gramm: 330. Artikel-Nr. 2430056

Verkäufer kontaktieren

Gebraucht kaufen

EUR 9,40
Währung umrechnen
Versand: EUR 16,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Ingersoll Andrew Ingersoll Andrew P.
ISBN 10: 0691145059 ISBN 13: 9780691145051
Neu Softcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. pp. 288. Artikel-Nr. 56774029

Verkäufer kontaktieren

Neu kaufen

EUR 22,58
Währung umrechnen
Versand: EUR 7,49
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Andrew Ingersoll
ISBN 10: 0691145059 ISBN 13: 9780691145051
Neu PAP

Anbieter: PBShop.store US, Wood Dale, IL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. WP-9780691145051

Verkäufer kontaktieren

Neu kaufen

EUR 32,14
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

INGERSOLL ANDREW P.
ISBN 10: 0691145059 ISBN 13: 9780691145051
Neu Softcover

Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Artikel-Nr. ABNR-241395

Verkäufer kontaktieren

Neu kaufen

EUR 34,66
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Andrew Ingersoll
ISBN 10: 0691145059 ISBN 13: 9780691145051
Neu PAP

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. WP-9780691145051

Verkäufer kontaktieren

Neu kaufen

EUR 33,12
Währung umrechnen
Versand: EUR 4,79
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Andrew Ingersoll
ISBN 10: 0691145059 ISBN 13: 9780691145051
Neu Softcover

Anbieter: Kennys Bookstore, Olney, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Offers an introduction to planetary climates that explains the global physical and chemical processes that determine climate on any planet or major planetary satellite - from Mercury to Neptune and even large moons such as Saturn's Titan. Series: Princeton Primers in Climate. Num Pages: 288 pages, 21 halftones. 15 line illus. 4 tables. BIC Classification: RBP; TTD. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 136 x 203 x 16. Weight in Grams: 294. . 2013. 2013th Edition. Paperback. . . . . Books ship from the US and Ireland. Artikel-Nr. V9780691145051

Verkäufer kontaktieren

Neu kaufen

EUR 40,08
Währung umrechnen
Versand: EUR 8,96
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Ingersoll, Andrew
ISBN 10: 0691145059 ISBN 13: 9780691145051
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780691145051_new

Verkäufer kontaktieren

Neu kaufen

EUR 36,07
Währung umrechnen
Versand: EUR 13,81
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 7 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Ingersoll, Andrew
Verlag: Princeton Univ Pr, 2013
ISBN 10: 0691145059 ISBN 13: 9780691145051
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 2013 edition. 288 pages. 8.25x5.25x0.75 inches. In Stock. Artikel-Nr. __0691145059

Verkäufer kontaktieren

Neu kaufen

EUR 38,45
Währung umrechnen
Versand: EUR 28,81
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Es gibt 3 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen