This book provides readers with the skills they need to write computer codes that simulate convection, internal gravity waves, and magnetic field generation in the interiors and atmospheres of rotating planets and stars. Using a teaching method perfected in the classroom, Gary Glatzmaier begins by offering a step-by-step guide on how to design codes for simulating nonlinear time-dependent thermal convection in a two-dimensional box using Fourier expansions in the horizontal direction and finite differences in the vertical direction. He then describes how to implement more efficient and accurate numerical methods and more realistic geometries in two and three dimensions. In the third part of the book, Glatzmaier demonstrates how to incorporate more sophisticated physics, including the effects of magnetic field, density stratification, and rotation.
Featuring numerous exercises throughout, this is an ideal textbook for students and an essential resource for researchers.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gary A. Glatzmaier is professor of earth and planetary sciences at the University of California, Santa Cruz. He is a fellow of the American Academy of Arts and Sciences and a member of the National Academy of Sciences.
"Glatzmaier's work is synonymous with the cutting edge of research in this field, and his tried-and-true presentation has been perfected over many years of teaching. I know of no other book that focuses on computer modeling of convection in planets and stars as this one does. It is an ideal tutorial for graduate students, and will also be of great interest to senior researchers."--James M. Stone, Princeton University
"The computational methods Glatzmaier describes can be applied to a huge range of nonlinear problems, with a variety of physical effects. There is a great deal of potential here for new investigations. In fact, our generation has barely scratched the surface! This is an important message for young scientists, who will find in this book some of the tools they will need to make future advances in astrophysics and geophysics."--Chris A. Jones, University of Leeds
"I am certain that this book will prove to be extremely useful to students and professionals alike. It is engagingly written, timely, comprehensive, and perhaps most importantly, graduated in its approach. Gary Glatzmaier is internationally recognized as one of the best computational scientists in geophysics and astrophysics."--Peter L. Olson, Johns Hopkins University
| Preface.................................................................... | xi |
| PART I. THE FUNDAMENTALS................................................... | 1 |
| Chapter 1 A Model of Rayleigh-Bénard Convection............................ | 3 |
| Chapter 2 Numerical Method................................................. | 17 |
| Chapter 3 Linear Stability Analysis........................................ | 27 |
| Chapter 4 Nonlinear Finite-Amplitude Dynamics.............................. | 35 |
| Chapter 5 Postprocessing................................................... | 51 |
| Chapter 6 Internal Gravity Waves........................................... | 59 |
| Chapter 7 Double-Diffusive Convection...................................... | 68 |
| PART II. ADDITIONAL NUMERICAL METHODS...................................... | 83 |
| Chapter 8 Time Integration Schemes......................................... | 85 |
| Chapter 9 Spatial Discretizations.......................................... | 95 |
| Chapter 10 Boundaries and Geometries....................................... | 115 |
| PART III. ADDITIONAL PHYSICS............................................... | 167 |
| Chapter 11 Magnetic Field.................................................. | 169 |
| Chapter 12 Density Stratification.......................................... | 193 |
| Chapter 13 Rotation........................................................ | 229 |
| Appendix A A Tridiagonal Matrix Solver..................................... | 283 |
| Appendix B Making Computer-Graphical Movies................................ | 284 |
| Appendix C Legendre Functions and Gaussian Quadrature...................... | 288 |
| Appendix D Parallel Processing: OpenMP..................................... | 291 |
| Appendix E Parallel Processing: MPI........................................ | 292 |
| Bibliography............................................................... | 295 |
| Index...................................................................... | 307 |
A Model of Rayleigh-Bénard Convection
There are two basic types of fluid flows within planets and stars that are drivenby thermally produced buoyancy forces: thermal convection and internal gravitywaves. The type depends on the thermal stratification within the fluid region. TheEarth's atmosphere and ocean, for example, are in most places convectively stable,which means that they support internal gravity waves, not (usually) convection (butsee Chapter 7). On warm afternoons, however, the sun can heat the ground surface,which changes the vertical temperature gradient in the troposphere and makes theatmosphere convectively unstable; the appearance of cumulus clouds is an indicationof the resulting convective heat (and moisture) flux. Thermal convection likelyalso occurs in the Earth's liquid outer core, which generates the geomagnetic field,and, on a much longer time scale, in the Earth's mantle, which drives plate tectonicsand, on a much shorter time scale, initiates earthquakes and volcanic eruptions.Thermal convection is seen on the surface of the sun and likely occurs in the outer30% of the solar radius, where solar magnetic field is generated. Below this depthbuoyancy likely drives internal gravity waves. Rotation strongly influences the styleof the convection and waves in all of these examples except the mantle, which isdominated by viscous forces.
Computer simulation studies, over the past few decades, have significantly improvedour understanding of these phenomena. Some studies, like those for theatmospheres of the Earth and sun, have provided physical explanations and predictionsof the observations. Others, like those for the deep interiors of the Earth andsun, have provided detailed theories and predictions of the dynamics that cannot bedirectly observed. As computers continue to improve in speed and memory, computerprograms are able to run at greater spatial and temporal resolutions, whichimproves the quality of and confidence in the simulations. Numerical and programmingmethods have also improved and need to continue to improve to take fulladvantage of the improvements in computer hardware.
1.1 BASIC THEORY
We begin with a simple description of the fundamental dynamics expected in afluid that is convectively stable and in one that is convectively unstable. Then wereview the equations that govern fluid dynamics based on conservation of mass,momentum, and energy.
1.1.1 Thermal Convection and Internal Gravity Waves
The thermal stability of a fluid within a gravitational field is determined by itshorizontal-mean (i.e., ambient) vertical temperature gradient. The classic way ofdescribing this is to consider a fluid in hydrostatic equilibrium, i.e., the weightof the fluid above a given height (per cross-sectional area) is supported by thepressure at that height. Therefore, the vertical pressure gradient is negative. (Asusual, "vertical" here and throughout this book refers to the direction of increasingheight or radius, opposite to that of the gravitational acceleration.) In the interiorsof planets and stars the horizontal-mean density and temperature also decreasewith height. The question is how does the vertical temperature gradient of this fluid(atmosphere) compare with what an adiabatic temperature gradient would be.
Consider a small (test) parcel of fluid (Fig. 1.1) that, at its initial position (1), hasthe same pressure, density, and temperature as the surrounding atmosphere at thatposition. Imagine raising the parcel to a new height (2), fast enough so there is noheat transfer between it and the surrounding atmosphere but slowly enough that itremains in pressure equilibrium with its surroundings; that is, its upward velocity ismuch less than the local sound speed. Assuming this process is reversible and alsoadiabatic since there is no heat transfer, the parcel's entropy remains constant whilerising; that is, this is an isentropic process. However, since it remains in pressureequilibrium with the surroundings, its density and temperature both decrease as itrises because the decrease in pressure causes it to expand. If, when reaching its newhigher position (2), its temperature has decreased more than the temperature of thesurrounding atmosphere has decreased over that change in height, its density therewill be greater than the density of the surrounding atmosphere there (assuming atypical coefficient of thermal expansion). Therefore, the parcel will be antibuoyantand, when no longer externally supported, will fall. As the parcel falls its temperatureincreases faster than the surrounding temperature and when it passes the initialposition its temperature exceeds the temperature of surrounding atmosphere, causingthe now buoyant parcel to eventually stop falling and then to start rising. Thisprocess of...
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Labyrinth Books, Princeton, NJ, USA
Zustand: New. Artikel-Nr. 158696
Anbieter: Phatpocket Limited, Waltham Abbey, HERTS, Vereinigtes Königreich
Zustand: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Artikel-Nr. Z1-G-015-01996
Anzahl: 1 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. Provides readers with the skills they need to write computer codes that simulate convection, internal gravity waves, and magnetic field generation in the interiors and atmospheres of rotating planets and stars. This book describes how to create codes that simulate the internal dynamics of planets and stars. Series: Princeton Series in Astrophysics. Num Pages: 328 pages, 16 color illus. 19 halftones. 23 line illus. 2 tables. BIC Classification: PBWH; PGC; PHVB. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 229 x 152. Weight in Grams: 685. . 2013. 1st Edition. Hardcover. . . . . Books ship from the US and Ireland. Artikel-Nr. V9780691141725
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 352 pages. 9.50x6.50x1.25 inches. In Stock. Artikel-Nr. __069114172X
Anzahl: 2 verfügbar