For hundreds of years, the study of elliptic curves has played a central role in mathematics. The past century in particular has seen huge progress in this study, from Mordell's theorem in 1922 to the work of Wiles and Taylor-Wiles in 1994. Nonetheless, there remain many fundamental questions where we do not even know what sort of answers to expect. This book explores two of them: What is the average rank of elliptic curves, and how does the rank vary in various kinds of families of elliptic curves? Nicholas Katz answers these questions for families of "big" twists of elliptic curves in the function field case (with a growing constant field). The monodromy-theoretic methods he develops turn out to apply, still in the function field case, equally well to families of big twists of objects of all sorts, not just to elliptic curves. The leisurely, lucid introduction gives the reader a clear picture of what is known and what is unknown at present, and situates the problems solved in this book within the broader context of the overall study of elliptic curves. The book's technical core makes use of, and explains, various advanced topics ranging from recent results in finite group theory to the machinery of l-adic cohomology and monodromy. Twisted L-Functions and Monodromy is essential reading for anyone interested in number theory and algebraic geometry.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Nicholas M. Katz is Professor of Mathematics at Princeton University. He is the author of four other books in this series: Arithmetic Moduli of Elliptic Curves (with Barry Mazur); Gauss Sums, Kloosterman Sums, and Monodromy Groups; Exponential Sums and Differential Equations; and Rigid Local Systems.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 35,95 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerEUR 4,78 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Antiquariat Bernhardt, Kassel, Deutschland
kartoniert. Zustand: Sehr gut. Zust: Gutes Exemplar. 249 Seiten, Englisch 384g. Artikel-Nr. 493990
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. GB-9780691091518
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780691091518_new
Anzahl: 1 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2001. Paperback. . . . . . Books ship from the US and Ireland. Artikel-Nr. V9780691091518
Anzahl: 1 verfügbar
Anbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Artikel-Nr. NW9780691091518
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 237 pages. 8.75x6.00x0.50 inches. In Stock. Artikel-Nr. __069109151X
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. For hundreds of years, the study of elliptic curves has played a central role in mathematics. This book explores: What is the average rank of elliptic curves, and how does the rank vary in various kinds of families of elliptic curves? It is suitable for tho. Artikel-Nr. 447030099
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 237 pages. 8.75x6.00x0.50 inches. In Stock. Artikel-Nr. x-069109151X
Anzahl: 2 verfügbar