This highly motivating introduction to statistical learning machines explains underlying principles in nontechnical language, using many examples and figures.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
James D. Malley is a Research Mathematical Statistician in the Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, at the National Institutes of Health.
Karen G. Malley is president of Malley Research Programming, Inc. in Rockville, Maryland, providing statistical programming services to the pharmaceutical industry and the National Institutes of Health. She also serves on the global council of the Clinical Data Interchange Standards Consortium (CDISC) user network, and the steering committee of the Washington, DC area CDISC user network.
Sinisa Pajevic is a Staff Scientist in the Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, at the National Institutes of Health.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Prior Books Ltd, Cheltenham, Vereinigtes Königreich
Hardcover. Zustand: Like New. First Edition. Firm, square and tight with sturdy hinges, just showing a few minor bumps and some mild cosmetic wear. Hence a non-text page is stamped 'damaged'. Despite such this book is in nearly new condition. Thus the contents are crisp, fresh and clean. Offered for sale at a very sensible price. Artikel-Nr. 117849
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 1st edition. 312 pages. 9.84x7.01x0.94 inches. In Stock. Artikel-Nr. x-0521875803
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is for anyone who has biomedical data and needs to identify variables that predict an outcome, for two-group outcomes such as tumor/not-tumor, survival/death, or response from treatment. Statistical learning machines are ideally suited to these types of prediction problems, especially if the variables being studied may not meet the assumptions of traditional techniques. Learning machines come from the world of probability and computer science but are not yet widely used in biomedical research. This introduction brings learning machine techniques to the biomedical world in an accessible way, explaining the underlying principles in nontechnical language and using extensive examples and figures. The authors connect these new methods to familiar techniques by showing how to use the learning machine models to generate smaller, more easily interpretable traditional models. Coverage includes single decision trees, multiple-tree techniques such as Random Forests(TM), neural nets, support vector machines, nearest neighbors and boosting. Artikel-Nr. 9780521875806
Anzahl: 1 verfügbar