Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Sumio Watanabe is a Professor in the Precision and Intelligence Laboratory at the Tokyo Institute of Technology.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Books From California, Simi Valley, CA, USA
hardcover. Zustand: Good. Artikel-Nr. mon0003879521
Anzahl: 1 verfügbar
Anbieter: Books From California, Simi Valley, CA, USA
hardcover. Zustand: Very Good. Artikel-Nr. mon0003745054
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 1st edition. 300 pages. 9.00x6.25x1.00 inches. In Stock. Artikel-Nr. x-0521864674
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory. Many widely used statistical models and learning machines applied to information science have a parameter space that is singular: mixture models, neural networks, HMMs, Bayesian networks, and stochastic context-free grammars are major examples. Algebraic geometry and singularity theory provide the necessary tools for studying such non-smooth models. Four main formulas are established: 1. the log likelihood function can be given a common standard form using resolution of singularities, even applied to more complex models; 2. the asymptotic behaviour of the marginal likelihood or 'the evidence' is derived based on zeta function theory; 3. new methods are derived to estimate the generalization errors in Bayes and Gibbs estimations from training errors; 4. the generalization errors of maximum likelihood and a posteriori methods are clarified by empirical process theory on algebraic varieties. Artikel-Nr. 9780521864671
Anzahl: 1 verfügbar