This book contains a wealth of inequalities used in linear analysis, explaining in detail how they are used.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
D. J. H. Garling is an Emeritus Reader in Mathematical Analysis at the University of Cambridge and a Fellow of St John's College, Cambridge.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 5,12 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 13,81 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Second Story Books, ABAA, Rockville, MD, USA
Softcover. First Edition, First Printing. Octavo, 335 pages. In Very Good condition. Light and dark blue spine with dark blue and white text. Covers have slight bending to corners. Textblock clean. Shelved ND-E. 1377821. FP New Rockville Stock. Artikel-Nr. 1377821
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780521699730_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 1st edition. 335 pages. 9.75x6.75x0.75 inches. In Stock. Artikel-Nr. x-0521699738
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Contains a wealth of inequalities used in linear analysis, and explains in detail how they are used. The book begins with Cauchy's inequality and ends with Grothendieck's inequality, in between one finds the Loomis-Whitney inequality, maximal inequalities, inequalities of Hardy and of Hilbert, hypercontractive and logarithmic Sobolev inequalities, Beckner's inequality, and many, many more. The inequalities are used to obtain properties of function spaces, linear operators between them, and of special classes of operators such as absolutely summing operators. This textbook complements and fills out standard treatments, providing many diverse applications: for example, the Lebesgue decomposition theorem and the Lebesgue density theorem, the Hilbert transform and other singular integral operators, the martingale convergence theorem, eigenvalue distributions, Lidskii's trace formula, Mercer's theorem and Littlewood's 4/3 theorem. It will broaden the knowledge of postgraduate and research students, and should also appeal to their teachers, and all who work in linear analysis. Artikel-Nr. 9780521699730
Anzahl: 1 verfügbar