This highly motivating introduction to statistical learning machines explains underlying principles in nontechnical language, using many examples and figures.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
James D. Malley is a Research Mathematical Statistician in the Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, at the National Institutes of Health.
Karen G. Malley is president of Malley Research Programming, Inc. in Rockville, Maryland, providing statistical programming services to the pharmaceutical industry and the National Institutes of Health. She also serves on the global council of the Clinical Data Interchange Standards Consortium (CDISC) user network, and the steering committee of the Washington, DC area CDISC user network.
Sinisa Pajevic is a Staff Scientist in the Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, at the National Institutes of Health.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 9,34 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerEUR 5,82 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: AMM Books, Gillingham, KENT, Vereinigtes Königreich
Paperback. Zustand: Very Good. Unread. In stock ready to dispatch from the UK. Artikel-Nr. mon0000198841
Anzahl: 2 verfügbar
Anbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: Very Good. 1. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Artikel-Nr. 0521699096-8-1
Anzahl: 1 verfügbar
Anbieter: Cotswold Internet Books, Cheltenham, Vereinigtes Königreich
Zustand: Used - Very Good. VG paperback. 1st ed. A bright copy, almost as-new. Artikel-Nr. BOOKS224769I
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780521699099_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is for anyone who has biomedical data and needs to identify variables that predict an outcome, for two-group outcomes such as tumor/not-tumor, survival/death, or response from treatment. Statistical learning machines are ideally suited to these types of prediction problems, especially if the variables being studied may not meet the assumptions of traditional techniques. Learning machines come from the world of probability and computer science but are not yet widely used in biomedical research. This introduction brings learning machine techniques to the biomedical world in an accessible way, explaining the underlying principles in nontechnical language and using extensive examples and figures. The authors connect these new methods to familiar techniques by showing how to use the learning machine models to generate smaller, more easily interpretable traditional models. Coverage includes single decision trees, multiple-tree techniques such as Random Forests(TM), neural nets, support vector machines, nearest neighbors and boosting. Artikel-Nr. 9780521699099
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 1st edition. 312 pages. 9.61x6.85x0.87 inches. In Stock. Artikel-Nr. x-0521699096
Anzahl: 2 verfügbar