Introductory textbook presenting relational methods in machine learning.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
M. E. Mueller is a Professor of Computer Science at the Bonn-Rhein-Sieg University of Applied Sciences.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 14,64 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: Labyrinth Books, Princeton, NJ, USA
Zustand: New. Artikel-Nr. 144802
Anzahl: 5 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780521122047_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - What is knowledge and how is it represented This book focuses on the idea of formalising knowledge as relations, interpreting knowledge represented in databases or logic programs as relational data and discovering new knowledge by identifying hidden and defining new relations. After a brief introduction to representational issues, the author develops a relational language for abstract machine learning problems. He then uses this language to discuss traditional methods such as clustering and decision tree induction, before moving onto two previously underestimated topics that are just coming to the fore: rough set data analysis and inductive logic programming. Its clear and precise presentation is ideal for undergraduate computer science students. The book will also interest those who study artificial intelligence or machine learning at the graduate level. Exercises are provided and each concept is introduced using the same example domain, making it easier to compare the individual properties of different approaches. Artikel-Nr. 9780521122047
Anzahl: 1 verfügbar