An interdisciplinary framework for learning methodologies―covering statistics, neural networks, and fuzzy logic, this book provides a unified treatment of the principles and methods for learning dependencies from data. It establishes a general conceptual framework in which various learning methods from statistics, neural networks, and fuzzy logic can be applied―showing that a few fundamental principles underlie most new methods being proposed today in statistics, engineering, and computer science. Complete with over one hundred illustrations, case studies, and examples making this an invaluable text.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Vladimir CherKassky, PhD, is Professor of Electrical and Computer Engineering at the University of Minnesota. He is internationally known for his research on neural networks and statistical learning.
Filip Mulier, PhD, has worked in the software field for the last twelve years, part of which has been spent researching, developing, and applying advanced statistical and machine learning methods. He currently holds a project management position.
An interdisciplinary framework for learning methodologies?now revised and updated
Learning from Data provides a unified treatment of the principles and methods for learning dependencies from data. It establishes a general conceptual framework in which various learning methods from statistics, neural networks, and pattern recognition can be applied?showing that a few fundamental principles underlie most new methods being proposed today in statistics, engineering, and computer science.
Since the first edition was published, the field of data-driven learning has experienced rapid growth. This Second Edition covers these developments with a completely revised chapter on support vector machines, a new chapter on noninductive inference and alternative learning formulations, and an in-depth discussion of the VC theoretical approach as it relates to other paradigms.
Complete with over one hundred illustrations, case studies, examples, and chapter summaries, Learning from Data accommodates both beginning and advanced graduate students in engineering, computer science, and statistics. It is also indispensable for researchers and practitioners in these areas who must understand the principles and methods for learning dependencies from data.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 6,82 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: BooksRun, Philadelphia, PA, USA
Hardcover. Zustand: Good. 2. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Artikel-Nr. 0471681822-11-1
Anzahl: 5 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Vladimir CherKassky, PhD, is Professor of Electrical and Computer Engineering at the University of Minnesota. He is internationally known for his research on neural networks and statistical learning.Filip Mulier, PhD, has worked in the software field for th. Artikel-Nr. 446917716
Anzahl: 2 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. FW-9780471681823
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780471681823_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - An interdisciplinary framework for learning methodologies-now revised and updatedLearning from Data provides a unified treatment of the principles and methods for learning dependencies from data. It establishes a general conceptual framework in which various learning methods from statistics, neural networks, and pattern recognition can be applied-showing that a few fundamental principles underlie most new methods being proposed today in statistics, engineering, and computer science.Since the first edition was published, the field of data-driven learning has experienced rapid growth. This Second Edition covers these developments with a completely revised chapter on support vector machines, a new chapter on noninductive inference and alternative learning formulations, and an in-depth discussion of the VC theoretical approach as it relates to other paradigms.Complete with over one hundred illustrations, case studies, examples, and chapter summaries, Learning from Data accommodates both beginning and advanced graduate students in engineering, computer science, and statistics. It is also indispensable for researchers and practitioners in these areas who must understand the principles and methods for learning dependencies from data. Artikel-Nr. 9780471681823
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 2nd edition. 538 pages. 9.75x6.50x1.25 inches. In Stock. Artikel-Nr. x-0471681822
Anzahl: 2 verfügbar