New technologies in engineering, physics and biomedicine are demanding increasingly complex methods of digital signal processing. By presenting the latest research work the authors demonstrate how real-time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction. Within this text neural networks are considered as massively interconnected nonlinear adaptive filters.
Recurrent Neural Networks for Prediction offers a new insight into the learning algorithms, architectures and stability of recurrent neural networks and, consequently, will have instant appeal. It provides an extensive background for researchers, academics and postgraduates enabling them to apply such networks in new applications.
VISIT OUR COMMUNICATIONS TECHNOLOGY WEBSITE!
http://www.wiley.co.uk/commstech/
VISIT OUR WEB PAGE!
http://www.wiley.co.uk/
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Danilo Mandic from the Imperial College London, London, UK was named Fellow of the Institute of Electrical and Electronics Engineers in 2013 for contributions to multivariate and nonlinear learning systems.
Jonathon A. Chambers is the author of Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability, published by Wiley.
New technologies in engineering, physics and biomedicine are demanding increasingly complex methods of digital signal processing. By presenting the latest research work the authors demonstrate how real-time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction. Within this text neural networks are considered as massively interconnected nonlinear adaptive filters.
Recurrent Neural Networks for Prediction offers a new insight into the learning algorithms, architectures and stability of recurrent neural networks and, consequently, will have instant appeal. It provides an extensive background for researchers, academics and postgraduates enabling them to apply such networks in new applications.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Studibuch, Stuttgart, Deutschland
hardcover. Zustand: Gut. 308 Seiten; 9780471495178.3 Gewicht in Gramm: 1. Artikel-Nr. 526662
Anzahl: 1 verfügbar
Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich
Zustand: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,800grams, ISBN:9780471495178. Artikel-Nr. 5835154
Anzahl: 1 verfügbar
Anbieter: Modernes Antiquariat an der Kyll, Lissendorf, Deutschland
hardcover. Zustand: Sehr gut. Buch ist leicht verlagert (längs durchgebogen), kleine Lagerspuren am Buch, Inhalt einwandfrei und ungelesen 238113 Sprache: Englisch Gewicht in Gramm: 740. Artikel-Nr. 219249
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Neural networks consist of interconnected groups of neurons which function as processing units and aim to reconstruct the operation of the human brain.InhaltsverzeichnisPreface. Introduction. Fundamentals. Network Architectures fo. Artikel-Nr. 446916884
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. FW-9780471495178
Anzahl: 15 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780471495178_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - New technologies in engineering, physics and biomedicine are demanding increasingly complex methods of digital signal processing. By presenting the latest research work the authors demonstrate how real-time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction. Within this text neural networks are considered as massively interconnected nonlinear adaptive filters. Artikel-Nr. 9780471495178
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 285 pages. 9.75x6.75x1.00 inches. In Stock. Artikel-Nr. x-0471495174
Anzahl: 2 verfügbar