Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice (Wiley Series in Probability and Statistics) - Hardcover

Meerschaert, Mark M.; Scheffler, Hans-Peter

 
9780471356295: Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice (Wiley Series in Probability and Statistics)

Inhaltsangabe

A comprehensive introduction to the central limit theory-from foundations to current research
This volume provides an introduction to the central limit theory of random vectors, which lies at the heart of probability and statistics. The authors develop the central limit theory in detail, starting with the basic constructions of modern probability theory, then developing the fundamental tools of infinitely divisible distributions and regular variation. They provide a number of extensions and applications to probability and statistics, and take the reader through the fundamentals to the current level of research.
In synthesizing results from nearly 200 research papers and presenting them in a self-contained form, authors Meerschaert and Scheffler have produced an accessible reference that treats the central limit theory honestly and focuses on multivariate models. For researchers, it provides an efficient and logical path through a large collection of results with many possible applications to real-world phenomena. Limit Distributions for Sums of Independent Random Vectors includes a coherent introduction to limit distributions and these other features:
* A self-contained introduction to the multivariate problem
* Multivariate regular variation for linear operators, real-valued functions, and Borel Measures
* Multivariate limit theorems: limit distributions, central limit theorems, and related limit theorems
* Real-world applications
Limit Distributions for Sums of Independent Random Vectors is a comprehensive reference that provides an up-to-date survey of the state of the art in this important research area.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

MARK M. MEERSCHAERT, PhD, is Associate Professor of Mathematics at the University of Nevada-Reno. He is also the author of Mathematical Modeling.
 
HANS-PETER SCHEFFLER, PhD, is Associate Professor of Mathematics at the University of Dortmund, Germany.

Von der hinteren Coverseite

A comprehensive introduction to the central limit theory-from foundations to current research

This volume provides an introduction to the central limit theory of random vectors, which lies at the heart of probability and statistics. The authors develop the central limit theory in detail, starting with the basic constructions of modern probability theory, then developing the fundamental tools of infinitely divisible distributions and regular variation. They provide a number of extensions and applications to probability and statistics, and take the reader through the fundamentals to the current level of research.

In synthesizing results from nearly 200 research papers and presenting them in a self-contained form, authors Meerschaert and Scheffler have produced an accessible reference that treats the central limit theory honestly and focuses on multivariate models. For researchers, it provides an efficient and logical path through a large collection of results with many possible applications to real-world phenomena. Limit Distributions for Sums of Independent Random Vectors includes a coherent introduction to limit distributions and these other features:
* A self-contained introduction to the multivariate problem
* Multivariate regular variation for linear operators, real-valued functions, and Borel Measures
* Multivariate limit theorems: limit distributions, central limit theorems, and related limit theorems
* Real-world applications

Limit Distributions for Sums of Independent Random Vectors is a comprehensive reference that provides an up-to-date survey of the state of the art in this important research area.

Aus dem Klappentext

A comprehensive introduction to the central limit theory-from foundations to current research
 
This volume provides an introduction to the central limit theory of random vectors, which lies at the heart of probability and statistics. The authors develop the central limit theory in detail, starting with the basic constructions of modern probability theory, then developing the fundamental tools of infinitely divisible distributions and regular variation. They provide a number of extensions and applications to probability and statistics, and take the reader through the fundamentals to the current level of research.
 
In synthesizing results from nearly 200 research papers and presenting them in a self-contained form, authors Meerschaert and Scheffler have produced an accessible reference that treats the central limit theory honestly and focuses on multivariate models. For researchers, it provides an efficient and logical path through a large collection of results with many possible applications to real-world phenomena. Limit Distributions for Sums of Independent Random Vectors includes a coherent introduction to limit distributions and these other features:
* A self-contained introduction to the multivariate problem
* Multivariate regular variation for linear operators, real-valued functions, and Borel Measures
* Multivariate limit theorems: limit distributions, central limit theorems, and related limit theorems
* Real-world applications
 
Limit Distributions for Sums of Independent Random Vectors is a comprehensive reference that provides an up-to-date survey of the state of the art in this important research area.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.