1
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Systematically explores the relationship between principal component analysis (PCA) and neural networks. Provides a synergistic examination of the mathematical, algorithmic, application and architectural aspects of principal component neural networks. Using a unified formulation, the authors present neural models performing PCA from the Hebbian learning rule and those which use least squares learning rules such as back-propagation. Examines the principles of biological perceptual systems to explain how the brain works. Every chapter contains a selected list of applications examples from diverse areas.
Principal Component Neural Networks Theory and Applications
Understanding the underlying principles of biological perceptual systems is of vital importance not only to neuroscientists, but, increasingly, to engineers and computer scientists who wish to develop artificial perceptual systems. In this original and groundbreaking work, the authors systematically examine the relationship between the powerful technique of Principal Component Analysis (PCA) and neural networks. Principal Component Neural Networks focuses on issues pertaining to both neural network models (i.e., network structures and algorithms) and theoretical extensions of PCA. In addition, it provides basic review material in mathematics and neurobiology. This book presents neural models originating from both the Hebbian learning rule and least squares learning rules, such as back-propagation. Its ultimate objective is to provide a synergistic exploration of the mathematical, algorithmic, application, and architectural aspects of principal component neural networks. Especially valuable to researchers and advanced students in neural network theory and signal processing, this book offers application examples from a variety of areas, including high-resolution spectral estimation, system identification, image compression, and pattern recognition.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 14,25 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: ThriftBooks-Dallas, Dallas, TX, USA
Hardcover. Zustand: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.3. Artikel-Nr. G0471054364I4N00
Anzahl: 1 verfügbar
Anbieter: ThriftBooks-Atlanta, AUSTELL, GA, USA
Hardcover. Zustand: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.3. Artikel-Nr. G0471054364I4N00
Anzahl: 1 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Gut. Zustand: Gut - Gebrauchs- und Lagerspuren. Außen: verschmutzt, angestoßen. | Seiten: 268 | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 226244/3
Anzahl: 1 verfügbar
Anbieter: Studibuch, Stuttgart, Deutschland
hardcover. Zustand: Sehr gut. 255 Seiten; 9780471054368.2 Gewicht in Gramm: 1. Artikel-Nr. 622046
Anzahl: 1 verfügbar
Anbieter: Emile Kerssemakers ILAB, Heerlen, Niederlande
24 cm. original hardcover. xii,256 pp. diagrams. bibliography. index. "Adaptive and Learning Systems for Signal Processing, Communications, and Control". -(owner's name, otherwise (very) good). 555g. Artikel-Nr. 70552
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780471054368_new
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. K. I. Diamantaras is a research scientist at Aristotle University in Thessaloniki, Greece. He received his PhD from Princeton University and was formerly a research scientist for Siemans Corporate Research.S. Y. Kung is Professor of Electrical Engineering a. Artikel-Nr. 446914367
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 1st edition. 272 pages. 9.75x6.50x0.75 inches. In Stock. Artikel-Nr. x-0471054364
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - Systematically explores the relationship between principal component analysis (PCA) and neural networks. Provides a synergistic examination of the mathematical, algorithmic, application and architectural aspects of principal component neural networks. Using a unified formulation, the authors present neural models performing PCA from the Hebbian learning rule and those which use least squares learning rules such as back-propagation. Examines the principles of biological perceptual systems to explain how the brain works. Every chapter contains a selected list of applications examples from diverse areas. Artikel-Nr. 9780471054368
Anzahl: 2 verfügbar