Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made.
Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence.
This book:
This book is aimed at postgraduate students following data analysis and data mining courses.
Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Carlo Vercellis - School of Management, Politecnico di Milano, Italy
As well as teaching courses in Operations Research and Business Intelligence, Professor Vercellis is director of the research group MOLD (Mathematical Modeling, Optimization, Learning from Data). He has written four book in Italian, contributed to numerous other books, and has had many papers published in a variety of international journals.
Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made.
Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence.
This book:
This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.
The advent of low-cost data storage technologies and the wide availability of Internet connections have made it easier for individuals and organizations to access large amounts of data. Such data are often heterogeneous in origin, content and representation, as they include commercial, financial and administrative transactions, web navigation paths, emails, texts and hypertexts, and the results of clinical tests, to name just a few examples. Their accessibility opens up promising scenarios and opportunities, and raises an enticing question: is it possible to convert such data into information and knowledge that can then be used by decision makers to aid and improve the governance of enterprises and of public administration?
Business intelligence may be defined as a set of mathematical models and analysis methodologies that exploit the available data to generate information and knowledge useful for complex decision-making processes. This opening chapter will describe in general terms the problems entailed in business intelligence, highlighting the interconnections with other disciplines and identifying the primary components typical of a business intelligence environment.
1.1 Effective and timely decisions
In complex organizations, public or private, decisions are made on a continual basis. Such decisions may be more or less critical, have long- or short-term effects and involve people and roles at various hierarchical levels. The ability of these knowledge workers to make decisions, both as individuals and as a community, is one of the primary factors that influence the performance and competitive strength of a given organization.
Most knowledge workers reach their decisions primarily using easy and intuitive methodologies, which take into account specific elements such as experience, knowledge of the application domain and the available information. This approach leads to a stagnant decision-making style which is inappropriate for the unstable conditions determined by frequent and rapid changes in the economic environment. Indeed, decision-making processes within today's organizations are often too complex and dynamic to be effectively dealt with through an intuitive approach, and require instead a more rigorous attitude based on analytical methodologies and mathematical models. The importance and strategic value of analytics in determining competitive advantage for enterprises has been recently pointed out by several authors, as described in the references at the end of this chapter. Examples 1.1 and 1.2 illustrate two highly complex decision-making processes in rapidly changing conditions.
The main purpose of business intelligence systems is to provide knowledge workers with tools and methodologies that allow them to make effective and timely decisions.
Effective decisions. The application of rigorous analytical methods allows decision makers to rely on information and knowledge which are more dependable. As a result, they are able to make better decisions and devise action plans that allow their objectives to be reached in a more effective way. Indeed, turning to formal analytical methods forces decision makers to explicitly describe both the criteria for evaluating alternative choices and the mechanisms regulating the problem under investigation. Furthermore, the ensuing in-depth examination and thought lead to a deeper awareness and comprehension of the underlying logic of the decision-making process.
Timely decisions. Enterprises operate in economic environments characterized by growing levels of competition and high dynamism. As a consequence, the ability to rapidly react to the actions of competitors and to new market conditions is a critical factor in the success or even the survival of a company.
Figure 1.1 illustrates the major benefits that a given organization may draw from the adoption of a business intelligence system. When facing problems such as those described in Examples 1.1 and 1.2 above, decision makers ask themselves a series of questions and develop the corresponding analysis. Hence, they examine and compare several options, selecting among them the best decision, given the conditions at hand.
If decision makers can rely on a business intelligence system facilitating their activity, we can expect that the overall quality of the decision-making process will be greatly improved. With the help of mathematical models and algorithms, it is actually possible to analyze a larger number of alternative actions, achieve more accurate conclusions and reach effective and timely decisions. We may therefore conclude that the major advantage deriving from the adoption of a business intelligence system is found in the increased effectiveness of the decision-making process.
1.2 Data, information and knowledge
As observed above, a vast amount of data has been accumulated within the information systems of public and private organizations. These data originate partly from internal transactions of an administrative, logistical and commercial nature and partly from external sources. However, even if they have been gathered and stored in a systematic and structured way, these data cannot be used directly for decision-making purposes. They need to be processed by means of appropriate extraction tools and analytical methods capable of transforming them into information and knowledge that can be subsequently used by decision makers.
The difference between data, information and knowledge can be better understood through the following remarks.
Data. Generally, data represent a structured codification of single primary entities, as well as of transactions involving two or more primary entities. For example, for a retailer data refer to primary entities such as customers, points of sale and items, while sales receipts represent the commercial transactions.
Information. Information is the outcome of extraction and processing activities carried out on data, and it appears meaningful for those who receive it in a specific domain. For example, to the sales manager of a retail company, the proportion of sales receipts in the amount of over 100 [euro] per week, or the number of customers holding a loyalty card who have reduced by more than 50% the monthly amount spent in the last three months, represent meaningful pieces of information that can be extracted from raw stored data.
Knowledge. Information is transformed into knowledge when it is used to make decisions and develop the corresponding actions. Therefore, we can think of knowledge as consisting of information put to work into a specific domain, enhanced by the experience and competence of decision makers in tackling and solving complex problems. For a retail company, a sales analysis may detect that a group of customers, living in an area where a competitor has recently opened a new point of sale, have reduced their usual amount of business. The knowledge extracted in this way will eventually lead to actions aimed at solving the problem detected, for example by introducing a new free home delivery service for the customers residing in that specific area. We wish to point out that knowledge can be extracted from data both in a passive way, through the analysis criteria suggested by the decision makers, or through the active application of mathematical models, in the form of inductive learning or optimization, as described in the following chapters.
Several public and private enterprises and organizations have developed in recent years formal and systematic mechanisms to gather, store and share their wealth of knowledge, which is now perceived as an invaluable intangible asset. The activity of providing support to knowledge workers through the integration of decision-making processes and enabling information technologies is usually referred to as knowledge management.
It is apparent that business intelligence and knowledge management share some degree of similarity in their objectives. The main purpose of both disciplines is to develop environments that can support knowledge workers in decision-making processes and complex problem-solving activities. To draw a boundary between the two approaches, we may observe that knowledge management methodologies primarily focus on the treatment of information that is usually unstructured, at times implicit, contained mostly in documents, conversations and past experience. Conversely, business intelligence systems are based on structured information, most often of a quantitative nature and usually organized in a database. However, this distinction is a somewhat fuzzy one: for example, the ability to analyze emails and web pages through text mining methods progressively induces business intelligence systems to deal with unstructured information.
1.3 The role of mathematical models
A business intelligence system provides decision makers with information and knowledge extracted from data, through the application of mathematical models and algorithms. In some instances, this activity may reduce to calculations of totals and percentages, graphically represented by simple histograms, whereas more elaborate analyses require the development of advanced optimization and learning models.
In general terms, the adoption of a business intelligence system tends to promote a scientific and rational approach to the management of enterprises and complex organizations. Even the use of a spreadsheet to estimate the effects on the budget of fluctuations in interest rates, despite its simplicity, forces decision makers to generate a mental representation of the financial flows process.
Classical scientific disciplines, such as physics, have always resorted to mathematical models for the abstract representation of real systems. Other disciplines, such as operations research, have instead exploited the application of scientific methods and mathematical models to the study of artificial systems, for example public and private organizations. Part II of this book will describe the main mathematical models used in business intelligence architectures and decision support systems, as well as the corresponding solution methods, while Part III will illustrate several related applications.
The rational approach typical of a business intelligence analysis can be summarized schematically in the following main characteristics.
First, the objectives of the analysis are identified and the performance indicators that will be used to evaluate alternative options are defined.
Mathematical models are then developed by exploiting the relationships among system control variables, parameters and evaluation metrics.
Finally, what-if analyses are carried out to evaluate the effects on the performance determined by variations in the control variables and changes in the parameters.
Although their primary objective is to enhance the effectiveness of the decision-making process, the adoption of mathematical models also affords other advantages, which can be appreciated particularly in the long term. First, the development of an abstract model forces decision makers to focus on the main features of the analyzed domain, thus inducing a deeper understanding of the phenomenon under investigation. Furthermore, the knowledge about the domain acquired when building a mathematical model can be more easily transferred in the long run to other individuals within the same organization, thus allowing a sharper preservation of knowledge in comparison to empirical decision-making processes. Finally, a mathematical model developed for a specific decision-making task is so general and flexible that in most cases it can be applied to other ensuing situations to solve problems of similar type.
1.4 Business intelligence architectures
The architecture of a business intelligence system, depicted in Figure 1.2, includes three major components.
Data sources. In a first stage, it is necessary to gather and integrate the data stored in the various primary and secondary sources, which are heterogeneous in origin and type. The sources consist for the most part of data belonging to operational systems, but may also include unstructured documents, such as emails and data received from external providers. Generally speaking, a major effort is required to unify and integrate the different data sources, as shown in Chapter 3.
Data warehouses and data marts. Using extraction and transformation tools known as extract, transform, load (ETL), the data originating from the different sources are stored in databases intended to support business intelligence analyses. These databases are usually referred to as data warehouses and data marts, and they will be the subject of Chapter 3.
Business intelligence methodologies. Data are finally extracted and used to feed mathematical models and analysis methodologies intended to support decision makers. In a business intelligence system, several decision support applications may be implemented, most of which will be described in the following chapters:
multidimensional cube analysis;
exploratory data analysis;
time series analysis;
inductive learning models for data mining;
optimization models.
The pyramid in Figure 1.3 shows the building blocks of a business intelligence system. So far, we have seen the components of the first two levels when discussing Figure 1.2. We now turn to the description of the upper tiers.
Data exploration. At the third level of the pyramid we find the tools for performing a passive business intelligence analysis, which consist of query and reporting systems, as well as statistical methods. These are referred to as passive methodologies because decision makers are requested to generate prior hypotheses or define data extraction criteria, and then use the analysis tools to find answers and confirm their original insight. For instance, consider the sales manager of a company who notices that revenues in a given geographic area have dropped for a specific group of customers. Hence, she might want to bear out her hypothesis by using extraction and visualization tools, and then apply a statistical test to verify that her conclusions are adequately supported by data. Statistical techniques for exploratory data analysis will be described in Chapters 6 and 7.
Data mining. The fourth level includes active business intelligence methodologies, whose purpose is the extraction of information and knowledge from data.
These include mathematical models for pattern recognition, machine learning and data mining techniques, which will be dealt with in Part II of this book. Unlike the tools described at the previous level of the pyramid, the models of an active kind do not require decision makers to formulate any prior hypothesis to be later verified. Their purpose is instead to expand the decision makers' knowledge.
Optimization. By moving up one level in the pyramid we find optimization models that allow us to determine the best solution out of a set of alternative actions, which is usually fairly extensive and sometimes even infinite. Example 1.2 shows a typical field of application of optimization models. Other optimization models applied in marketing and logistics will be described in Chapters 13 and 14.
Decisions. Finally, the top of the pyramid corresponds to the choice and the actual adoption of a specific decision, and in some way represents the natural conclusion of the decision-making process. Even when business intelligence methodologies are available and successfully adopted, the choice of a decision pertains to the decision makers, who may also take advantage of informal and unstructured information available to adapt and modify the recommendations and the conclusions achieved through the use of mathematical models.
As we progress from the bottom to the top of the pyramid, business intelligence systems offer increasingly more advanced support tools of an active type. Even roles and competencies change. At the bottom, the required competencies are provided for the most part by the information systems specialists within the organization, usually referred to as database administrators. Analysts and experts in mathematical and statistical models are responsible for the intermediate phases. Finally, the activities of decision makers responsible for the application domain appear dominant at the top.
As described above, business intelligence systems address the needs of different types of complex organizations, including agencies of public administration and associations. However, if we restrict our attention to enterprises, business intelligence methodologies can be found mainly within three departments of a company, as depicted in Figure 1.4: marketing and sales; logistics and production; accounting and control. The applications of business intelligence described in Part III of this volume will be precisely devoted to these topics.
(Continues...)
Excerpted from Business Intelligenceby Carlo Vercellis Copyright © 2009 by John Wiley & Sons, Ltd. Excerpted by permission.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Carlo Vercellis - School of Management, Politecnico di Milano, ItalyAs well as teaching courses in Operations Research and Business Intelligence, Professor Vercellis is director of the research group MOLD (Mathematical Modeling, Optimization, Learning from . Artikel-Nr. 446912751
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. FW-9780470511381
Anzahl: 15 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780470511381_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made.Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence.This book:\* Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence.\* Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation.\* Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies.\* Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions.This book is aimed at postgraduate students following data analysis and data mining courses.Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide. Artikel-Nr. 9780470511381
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 1st edition. 436 pages. 9.25x6.25x1.00 inches. In Stock. Artikel-Nr. x-0470511389
Anzahl: 2 verfügbar