Verwandte Artikel zu Kernel Adaptive Filtering: A Comprehensive Introduction:...

Kernel Adaptive Filtering: A Comprehensive Introduction: 57 (Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control) - Hardcover

 
9780470447536: Kernel Adaptive Filtering: A Comprehensive Introduction: 57 (Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control)

Inhaltsangabe

Online learning from a signal processing perspective

There is increased interest in kernel learning algorithms in neural networks and a growing need for nonlinear adaptive algorithms in advanced signal processing, communications, and controls. Kernel Adaptive Filtering is the first book to present a comprehensive, unifying introduction to online learning algorithms in reproducing kernel Hilbert spaces. Based on research being conducted in the Computational Neuro-Engineering Laboratory at the University of Florida and in the Cognitive Systems Laboratory at McMaster University, Ontario, Canada, this unique resource elevates the adaptive filtering theory to a new level, presenting a new design methodology of nonlinear adaptive filters.

  • Covers the kernel least mean squares algorithm, kernel affine projection algorithms, the kernel recursive least squares algorithm, the theory of Gaussian process regression, and the extended kernel recursive least squares algorithm

  • Presents a powerful model-selection method called maximum marginal likelihood

  • Addresses the principal bottleneck of kernel adaptive filters―their growing structure

  • Features twelve computer-oriented experiments to reinforce the concepts, with MATLAB codes downloadable from the authors' Web site

  • Concludes each chapter with a summary of the state of the art and potential future directions for original research

Kernel Adaptive Filtering is ideal for engineers, computer scientists, and graduate students interested in nonlinear adaptive systems for online applications (applications where the data stream arrives one sample at a time and incremental optimal solutions are desirable). It is also a useful guide for those who look for nonlinear adaptive filtering methodologies to solve practical problems.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Weifeng Liu, PhD, is a senior engineer of the Demand Forecasting Team at Amazon.com Inc. His research interests include kernel adaptive filtering, online active learning, and solving real-life large-scale data mining problems.

José C. Principe is Distinguished Professor of Electrical and Biomedical Engineering at the University of Florida, Gainesville, where he teaches advanced signal processing and artificial neural networks modeling. He is BellSouth Professor and founder and Director of the University of Florida Computational Neuro-Engineering Laboratory.

Simon Haykin is Distinguished University Professor at McMaster University, Canada.He is world-renowned for his contributions to adaptive filtering applied to radar and communications. Haykin's current research passion is focused on cognitive dynamic systems, including applications on cognitive radio and cognitive radar.

Von der hinteren Coverseite

Online learning from a signal processing perspective

There is increased interest in kernel learning algorithms in neural networks and a growing need for nonlinear adaptive algorithms in advanced signal processing, communications, and controls. Kernel Adaptive Filtering is the first book to present a comprehensive, unifying introduction to online learning algorithms in reproducing kernel Hilbert spaces. Based on research being conducted in the Computational Neuro-Engineering Laboratory at the University of Florida and in the Cognitive Systems Laboratory at McMaster University, Ontario, Canada, this unique resource elevates the adaptive filtering theory to a new level, presenting a new design methodology of nonlinear adaptive filters.

  • Covers the kernel least mean squares algorithm, kernel affine projection algorithms, the kernel recursive least squares algorithm, the theory of Gaussian process regression, and the extended kernel recursive least squares algorithm

  • Presents a powerful model-selection method called maximum marginal likelihood

  • Addresses the principal bottleneck of kernel adaptive filters--their growing structure

  • Features twelve computer-oriented experiments to reinforce the concepts, with MATLAB codes downloadable from the authors' Web site

  • Concludes each chapter with a summary of the state of the art and potential future directions for original research

Kernel Adaptive Filtering is ideal for engineers, computer scientists, and graduate students interested in nonlinear adaptive systems for online applications (applications where the data stream arrives one sample at a time and incremental optimal solutions are desirable). It is also a useful guide for those who look for nonlinear adaptive filtering methodologies to solve practical problems.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 13,75 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Suchergebnisse für Kernel Adaptive Filtering: A Comprehensive Introduction:...

Beispielbild für diese ISBN

Weifeng Liu; Jose C. Principe; Simon Haykin
Verlag: Wiley, 2010
ISBN 10: 0470447532 ISBN 13: 9780470447536
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780470447536_new

Verkäufer kontaktieren

Neu kaufen

EUR 114,53
Währung umrechnen
Versand: EUR 13,75
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

José C. Principe|Weifeng Liu|Simon Haykin
Verlag: John Wiley & Sons, 2010
ISBN 10: 0470447532 ISBN 13: 9780470447536
Neu Hardcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Gebunden. Zustand: New. Artikel-Nr. 556555517

Verkäufer kontaktieren

Neu kaufen

EUR 129,93
Währung umrechnen
Versand: EUR 48,99
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Principe, Jose C./ Liu, Weifeng/ Haykin, Simon
Verlag: John Wiley & Sons Inc, 2010
ISBN 10: 0470447532 ISBN 13: 9780470447536
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 209 pages. 9.25x6.25x0.75 inches. In Stock. Artikel-Nr. x-0470447532

Verkäufer kontaktieren

Neu kaufen

EUR 167,48
Währung umrechnen
Versand: EUR 28,70
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Weifeng Liu
Verlag: Wiley Mär 2010, 2010
ISBN 10: 0470447532 ISBN 13: 9780470447536
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware - Online learning from a signal processing perspectiveThere is increased interest in kernel learning algorithms in neural networks and a growing need for nonlinear adaptive algorithms in advanced signal processing, communications, and controls. Kernel Adaptive Filtering is the first book to present a comprehensive, unifying introduction to online learning algorithms in reproducing kernel Hilbert spaces. Based on research being conducted in the Computational Neuro-Engineering Laboratory at the University of Florida and in the Cognitive Systems Laboratory at McMaster University, Ontario, Canada, this unique resource elevates the adaptive filtering theory to a new level, presenting a new design methodology of nonlinear adaptive filters.\* Covers the kernel least mean squares algorithm, kernel affine projection algorithms, the kernel recursive least squares algorithm, the theory of Gaussian process regression, and the extended kernel recursive least squares algorithm\* Presents a powerful model-selection method called maximum marginal likelihood\* Addresses the principal bottleneck of kernel adaptive filters--their growing structure\* Features twelve computer-oriented experiments to reinforce the concepts, with MATLAB codes downloadable from the authors' Web site\* Concludes each chapter with a summary of the state of the art and potential future directions for original researchKernel Adaptive Filtering is ideal for engineers, computer scientists, and graduate students interested in nonlinear adaptive systems for online applications (applications where the data stream arrives one sample at a time and incremental optimal solutions are desirable). It is also a useful guide for those who look for nonlinear adaptive filtering methodologies to solve practical problems. Artikel-Nr. 9780470447536

Verkäufer kontaktieren

Neu kaufen

EUR 158,87
Währung umrechnen
Versand: EUR 62,64
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb