Online learning from a signal processing perspective
There is increased interest in kernel learning algorithms in neural networks and a growing need for nonlinear adaptive algorithms in advanced signal processing, communications, and controls. Kernel Adaptive Filtering is the first book to present a comprehensive, unifying introduction to online learning algorithms in reproducing kernel Hilbert spaces. Based on research being conducted in the Computational Neuro-Engineering Laboratory at the University of Florida and in the Cognitive Systems Laboratory at McMaster University, Ontario, Canada, this unique resource elevates the adaptive filtering theory to a new level, presenting a new design methodology of nonlinear adaptive filters.
Covers the kernel least mean squares algorithm, kernel affine projection algorithms, the kernel recursive least squares algorithm, the theory of Gaussian process regression, and the extended kernel recursive least squares algorithm
Presents a powerful model-selection method called maximum marginal likelihood
Addresses the principal bottleneck of kernel adaptive filters―their growing structure
Features twelve computer-oriented experiments to reinforce the concepts, with MATLAB codes downloadable from the authors' Web site
Concludes each chapter with a summary of the state of the art and potential future directions for original research
Kernel Adaptive Filtering is ideal for engineers, computer scientists, and graduate students interested in nonlinear adaptive systems for online applications (applications where the data stream arrives one sample at a time and incremental optimal solutions are desirable). It is also a useful guide for those who look for nonlinear adaptive filtering methodologies to solve practical problems.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Weifeng Liu, PhD, is a senior engineer of the Demand Forecasting Team at Amazon.com Inc. His research interests include kernel adaptive filtering, online active learning, and solving real-life large-scale data mining problems.
José C. Principe is Distinguished Professor of Electrical and Biomedical Engineering at the University of Florida, Gainesville, where he teaches advanced signal processing and artificial neural networks modeling. He is BellSouth Professor and founder and Director of the University of Florida Computational Neuro-Engineering Laboratory.
Simon Haykin is Distinguished University Professor at McMaster University, Canada.He is world-renowned for his contributions to adaptive filtering applied to radar and communications. Haykin's current research passion is focused on cognitive dynamic systems, including applications on cognitive radio and cognitive radar.
Online learning from a signal processing perspective
There is increased interest in kernel learning algorithms in neural networks and a growing need for nonlinear adaptive algorithms in advanced signal processing, communications, and controls. Kernel Adaptive Filtering is the first book to present a comprehensive, unifying introduction to online learning algorithms in reproducing kernel Hilbert spaces. Based on research being conducted in the Computational Neuro-Engineering Laboratory at the University of Florida and in the Cognitive Systems Laboratory at McMaster University, Ontario, Canada, this unique resource elevates the adaptive filtering theory to a new level, presenting a new design methodology of nonlinear adaptive filters.
Covers the kernel least mean squares algorithm, kernel affine projection algorithms, the kernel recursive least squares algorithm, the theory of Gaussian process regression, and the extended kernel recursive least squares algorithm
Presents a powerful model-selection method called maximum marginal likelihood
Addresses the principal bottleneck of kernel adaptive filters--their growing structure
Features twelve computer-oriented experiments to reinforce the concepts, with MATLAB codes downloadable from the authors' Web site
Concludes each chapter with a summary of the state of the art and potential future directions for original research
Kernel Adaptive Filtering is ideal for engineers, computer scientists, and graduate students interested in nonlinear adaptive systems for online applications (applications where the data stream arrives one sample at a time and incremental optimal solutions are desirable). It is also a useful guide for those who look for nonlinear adaptive filtering methodologies to solve practical problems.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 13,75 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780470447536_new
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Artikel-Nr. 556555517
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 209 pages. 9.25x6.25x0.75 inches. In Stock. Artikel-Nr. x-0470447532
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - Online learning from a signal processing perspectiveThere is increased interest in kernel learning algorithms in neural networks and a growing need for nonlinear adaptive algorithms in advanced signal processing, communications, and controls. Kernel Adaptive Filtering is the first book to present a comprehensive, unifying introduction to online learning algorithms in reproducing kernel Hilbert spaces. Based on research being conducted in the Computational Neuro-Engineering Laboratory at the University of Florida and in the Cognitive Systems Laboratory at McMaster University, Ontario, Canada, this unique resource elevates the adaptive filtering theory to a new level, presenting a new design methodology of nonlinear adaptive filters.\* Covers the kernel least mean squares algorithm, kernel affine projection algorithms, the kernel recursive least squares algorithm, the theory of Gaussian process regression, and the extended kernel recursive least squares algorithm\* Presents a powerful model-selection method called maximum marginal likelihood\* Addresses the principal bottleneck of kernel adaptive filters--their growing structure\* Features twelve computer-oriented experiments to reinforce the concepts, with MATLAB codes downloadable from the authors' Web site\* Concludes each chapter with a summary of the state of the art and potential future directions for original researchKernel Adaptive Filtering is ideal for engineers, computer scientists, and graduate students interested in nonlinear adaptive systems for online applications (applications where the data stream arrives one sample at a time and incremental optimal solutions are desirable). It is also a useful guide for those who look for nonlinear adaptive filtering methodologies to solve practical problems. Artikel-Nr. 9780470447536
Anzahl: 2 verfügbar