A concise introduction to the major concepts of functional analysis
Requiring only a preliminary knowledge of elementary linear algebra and real analysis, A First Course in Functional Analysis provides an introduction to the basic principles and practical applications of functional analysis. Key concepts are illustrated in a straightforward manner, which facilitates a complete and fundamental understanding of the topic.
This book is based on the author's own class-tested material and uses clear language to explain the major concepts of functional analysis, including Banach spaces, Hilbert spaces, topological vector spaces, as well as bounded linear functionals and operators. As opposed to simply presenting the proofs, the author outlines the logic behind the steps, demonstrates the development of arguments, and discusses how the concepts are connected to one another. Each chapter concludes with exercises ranging in difficulty, giving readers the opportunity to reinforce their comprehension of the discussed methods. An appendix provides a thorough introduction to measure and integration theory, and additional appendices address the background material on topics such as Zorn's lemma, the Stone-Weierstrass theorem, Tychonoff's theorem on product spaces, and the upper and lower limit points of sequences. References to various applications of functional analysis are also included throughout the book.
A First Course in Functional Analysis is an ideal text for upper-undergraduate and graduate-level courses in pure and applied mathematics, statistics, and engineering. It also serves as a valuable reference for practitioners across various disciplines, including the physical sciences, economics, and finance, who would like to expand their knowledge of functional analysis.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
S. David Promislow, PhD, is Professor Emeritus of Mathematics at York University in Toronto, Canada. Dr. Promislow has over thirty-five years of teaching experience in the areas of functional analysis, group theory, measure theory, and actuarial mathematics. He is the author of Fundamentals of Actuarial Mathematics, also published by Wiley.
A concise introduction to the major concepts of functional analysis
Requiring only a preliminary knowledge of elementary linear algebra and real analysis, A First Course in Functional Analysis provides an introduction to the basic principles and practical applications of functional analysis. Key concepts are illustrated in a straightforward manner, which facilitates a complete and fundamental understanding of the topic.
This book is based on the author's own class-tested material and uses clear language to explain the major concepts of functional analysis, including Banach spaces, Hilbert spaces, topological vector spaces, as well as bounded linear functionals and operators. As opposed to simply presenting the proofs, the author outlines the logic behind the steps, demonstrates the development of arguments, and discusses how the concepts are connected to one another. Each chapter concludes with exercises ranging in difficulty, giving readers the opportunity to reinforce their comprehension of the discussed methods. An appendix provides a thorough introduction to measure and integration theory, and additional appendices address the background material on topics such as Zorn's lemma, the Stone-Weierstrass theorem, Tychonoff's theorem on product spaces, and the upper and lower limit points of sequences. References to various applications of functional analysis are also included throughout the book.
A First Course in Functional Analysis is an ideal text for upper-undergraduate and graduate-level courses in pure and applied mathematics, statistics, and engineering. It also serves as a valuable reference for practitioners across various disciplines, including the physical sciences, economics, and finance, who would like to expand their knowledge of functional analysis.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. xiii + 307 Illus. Artikel-Nr. 7524134
Anzahl: 3 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. S. David Promislow, PhD, is Professor Emeritus of Mathematics at York University in Toronto, Canada. Dr. Promislow has over thirty-five years of teaching experience in the areas of functional analysis, group theory, measure theory, and actuarial mathematics. Artikel-Nr. 446911806
Anzahl: Mehr als 20 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. This straight-forward, concise book is made up of carefully selected topics and is written in an accessible that requires minimal background knowledge. It provides the reader with a sense of unity in the subject's development and fully explains the essential concepts, outlining the logic behind the steps to familiarize the reader with the theories. Series: Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Num Pages: 308 pages, ill. BIC Classification: PBKF. Category: (P) Professional & Vocational. Dimension: 238 x 152 x 21. Weight in Grams: 596. . 2008. 1st Edition. Hardcover. . . . . Books ship from the US and Ireland. Artikel-Nr. V9780470146194
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 1st edition. 308 pages. 9.25x6.25x0.50 inches. In Stock. Artikel-Nr. x-0470146192
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - A concise introduction to the major concepts of functional analysisRequiring only a preliminary knowledge of elementary linear algebra and real analysis, A First Course in Functional Analysis provides an introduction to the basic principles and practical applications of functional analysis. Key concepts are illustrated in a straightforward manner, which facilitates a complete and fundamental understanding of the topic.This book is based on the author's own class-tested material and uses clear language to explain the major concepts of functional analysis, including Banach spaces, Hilbert spaces, topological vector spaces, as well as bounded linear functionals and operators. As opposed to simply presenting the proofs, the author outlines the logic behind the steps, demonstrates the development of arguments, and discusses how the concepts are connected to one another. Each chapter concludes with exercises ranging in difficulty, giving readers the opportunity to reinforce their comprehension of the discussed methods. An appendix provides a thorough introduction to measure and integration theory, and additional appendices address the background material on topics such as Zorn's lemma, the Stone-Weierstrass theorem, Tychonoff's theorem on product spaces, and the upper and lower limit points of sequences. References to various applications of functional analysis are also included throughout the book.A First Course in Functional Analysis is an ideal text for upper-undergraduate and graduate-level courses in pure and applied mathematics, statistics, and engineering. It also serves as a valuable reference for practitioners across various disciplines, including the physical sciences, economics, and finance, who would like to expand their knowledge of functional analysis. Artikel-Nr. 9780470146194
Anzahl: 2 verfügbar