With the advent of computers, very large datasets have become routine. Standard statistical methods don’t have the power or flexibility to analyse these efficiently, and extract the required knowledge. An alternative approach is to summarize a large dataset in such a way that the resulting summary dataset is of a manageable size and yet retains as much of the knowledge in the original dataset as possible. One consequence of this is that the data may no longer be formatted as single values, but be represented by lists, intervals, distributions, etc. The summarized data have their own internal structure, which must be taken into account in any analysis.
This text presents a unified account of symbolic data, how they arise, and how they are structured. The reader is introduced to symbolic analytic methods described in the consistent statistical framework required to carry out such a summary and subsequent analysis.
Primarily aimed at statisticians and data analysts, Symbolic Data Analysis is also ideal for scientists working on problems involving large volumes of data from a range of disciplines, including computer science, health and the social sciences. There is also much of use to graduate students of statistical data analysis courses.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Lynne Billard is a multi award winning University Professor of Statistics at the University of Georgia, USA. Her areas of interest include epidemic theory, AIDS, time series, sequential analysis, and symbolic data. A former President of the American Statistical Association as well as the ENAR Regional President and International President of the International Biometric Society, Professor Billard has co-edited 6 books, published over150 papers and been actively involved in many statistical societies and national committees.
Edwin Diday is a Professor in Computer Science and Mathematics, at the Université Paris Dauphine, France. He is the author or editor of 14 previous books. He is also the founder of the symbolic data analysis field, and has led numerous international research teams in the area.
With the advent of computers, very large datasets have become routine. Standard statistical methods don't have the power or flexibility to analyse these efficiently, and extract the required knowledge. An alternative approach is to summarize a large dataset in such a way that the resulting summary dataset is of a manageable size and yet retains as much of the knowledge in the original dataset as possible. One consequence of this is that the data may no longer be formatted as single values, but be represented by lists, intervals, distributions, etc. The summarized data have their own internal structure, which must be taken into account in any analysis.
This text presents a unified account of symbolic data, how they arise, and how they are structured. The reader is introduced to symbolic analytic methods described in the consistent statistical framework required to carry out such a summary and subsequent analysis.
Primarily aimed at statisticians and data analysts, Symbolic Data Analysis is also ideal for scientists working on problems involving large volumes of data from a range of disciplines, including computer science, health and the social sciences. There is also much of use to graduate students of statistical data analysis courses.
With the advent of computers, very large datasets have become routine. Standard statistical methods don’t have the power or flexibility to analyse these efficiently, and extract the required knowledge. An alternative approach is to summarize a large dataset in such a way that the resulting summary dataset is of a manageable size and yet retains as much of the knowledge in the original dataset as possible. One consequence of this is that the data may no longer be formatted as single values, but be represented by lists, intervals, distributions, etc. The summarized data have their own internal structure, which must be taken into account in any analysis.
This text presents a unified account of symbolic data, how they arise, and how they are structured. The reader is introduced to symbolic analytic methods described in the consistent statistical framework required to carry out such a summary and subsequent analysis.
Primarily aimed at statisticians and data analysts, Symbolic Data Analysis is also ideal for scientists working on problems involving large volumes of data from a range of disciplines, including computer science, health and the social sciences. There is also much of use to graduate students of statistical data analysis courses.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland
321 S. Ill. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Wiley series in computational statistics. Sprache: Englisch. Artikel-Nr. 4748MB
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. FW-9780470090169
Anzahl: 15 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 330 Illus. Artikel-Nr. 7521902
Anzahl: 3 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. The first book to present a unified account of symbolic data analysis methods in a consistent statistical framework, Symbolic Data Analysis features a substantial number of examples from a range of application areas, including health, the social sciences, e. Artikel-Nr. 446911603
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 1st edition. 330 pages. 9.00x6.00x1.00 inches. In Stock. Artikel-Nr. x-0470090162
Anzahl: 2 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. The first book to present a unified account of symbolic data analysis methods in a consistent statistical framework, Symbolic Data Analysis features a substantial number of examples from a range of application areas, including health, the social sciences, economics, and computer science. Series: Wiley Series in Computational Statistics. Num Pages: 330 pages, illustrations. BIC Classification: PB; PS; UF. Category: (P) Professional & Vocational. Dimension: 233 x 162 x 23. Weight in Grams: 598. . 2007. 1st Edition. Hardcover. . . . . Books ship from the US and Ireland. Artikel-Nr. V9780470090169
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - With the advent of computers, very large datasets have become routine. Standard statistical methods don't have the power or flexibility to analyse these efficiently, and extract the required knowledge. An alternative approach is to summarize a large dataset in such a way that the resulting summary dataset is of a manageable size and yet retains as much of the knowledge in the original dataset as possible. One consequence of this is that the data may no longer be formatted as single values, but be represented by lists, intervals, distributions, etc. The summarized data have their own internal structure, which must be taken into account in any analysis. Artikel-Nr. 9780470090169
Anzahl: 2 verfügbar