Verwandte Artikel zu Monte Carlo Methods in Bayesian Computation (Springer...

Monte Carlo Methods in Bayesian Computation (Springer Series in Statistics) - Hardcover

 
9780387989358: Monte Carlo Methods in Bayesian Computation (Springer Series in Statistics)

Inhaltsangabe

Dealing with methods for sampling from posterior distributions and how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples, this book addresses such topics as improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches. The book presents an equal mixture of theory and applications involving real data, and is intended as a graduate textbook or a reference book for a one-semester course at the advanced masters or Ph.D. level. It will also serve as a useful reference for applied or theoretical researchers as well as practitioners.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Críticas

"This book combines the theory topics with good computer and application examples from the field of food science, agriculture, cancer and others. The volume will provide an excellent research resource for statisticians with an interest in computer intensive methods for modelling with different sorts of prior information."
A.V. Tsukanov in "Short Book Reviews", Vol. 20/3, December 2000

Reseña del editor

Dealing with methods for sampling from posterior distributions and how to compute posterior quantities of interest using Markov chain Monte Carlo (MCMC) samples, this book addresses such topics as improving simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, highest posterior density interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. The authors also discuss model comparisons, including both nested and non-nested models, marginal likelihood methods, ratios of normalizing constants, Bayes factors, the Savage-Dickey density ratio, Stochastic Search Variable Selection, Bayesian Model Averaging, the reverse jump algorithm, and model adequacy using predictive and latent residual approaches. The book presents an equal mixture of theory and applications involving real data, and is intended as a graduate textbook or a reference book for a one-semester course at the advanced masters or Ph.D. level. It will also serve as a useful reference for applied or theoretical researchers as well as practitioners.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Befriedigend
Former library book; may include...
Diesen Artikel anzeigen

EUR 15,77 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781461270744: Monte Carlo Methods in Bayesian Computation (Springer Series in Statistics)

Vorgestellte Ausgabe

ISBN 10:  146127074X ISBN 13:  9781461270744
Verlag: Springer, 2012
Softcover

Suchergebnisse für Monte Carlo Methods in Bayesian Computation (Springer...

Beispielbild für diese ISBN

Chen, Ming-Hui, Ibrahim, Joseph G., Shao, Qi-Man
Verlag: Springer New York, 2000
ISBN 10: 0387989358 ISBN 13: 9780387989358
Gebraucht Hardcover

Anbieter: Better World Books, Mishawaka, IN, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Good. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages. Artikel-Nr. 10847492-6

Verkäufer kontaktieren

Gebraucht kaufen

EUR 17,92
Währung umrechnen
Versand: EUR 15,77
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Chen, Ming-Hui, Ibrahim, Joseph G., Shao, Qi-Man
Verlag: Springer New York, 2000
ISBN 10: 0387989358 ISBN 13: 9780387989358
Gebraucht Hardcover

Anbieter: Better World Books: West, Reno, NV, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Good. Used book that is in clean, average condition without any missing pages. Artikel-Nr. 2306751-6

Verkäufer kontaktieren

Gebraucht kaufen

EUR 17,92
Währung umrechnen
Versand: EUR 15,77
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Ming-Hui Chen
ISBN 10: 0387989358 ISBN 13: 9780387989358
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -Sampling from the posterior distribution and computing posterior quanti ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent residual approaches are also discussed. The book presents an equal mixture of theory and real applications.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 406 pp. Englisch. Artikel-Nr. 9780387989358

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Ming-Hui Chen
ISBN 10: 0387989358 ISBN 13: 9780387989358
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Sampling from the posterior distribution and computing posterior quanti ties of interest using Markov chain Monte Carlo (MCMC) samples are two major challenges involved in advanced Bayesian computation. This book examines each of these issues in detail and focuses heavily on comput ing various posterior quantities of interest from a given MCMC sample. Several topics are addressed, including techniques for MCMC sampling, Monte Carlo (MC) methods for estimation of posterior summaries, improv ing simulation accuracy, marginal posterior density estimation, estimation of normalizing constants, constrained parameter problems, Highest Poste rior Density (HPD) interval calculations, computation of posterior modes, and posterior computations for proportional hazards models and Dirichlet process models. Also extensive discussion is given for computations in volving model comparisons, including both nested and nonnested models. Marginal likelihood methods, ratios of normalizing constants, Bayes fac tors, the Savage-Dickey density ratio, Stochastic Search Variable Selection (SSVS), Bayesian Model Averaging (BMA), the reverse jump algorithm, and model adequacy using predictive and latent residual approaches are also discussed. The book presents an equal mixture of theory and real applications. Artikel-Nr. 9780387989358

Verkäufer kontaktieren

Neu kaufen

EUR 114,36
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Chen, Ming-Hui; Shao, Qi-Man; Ibrahim, Joseph G.
Verlag: Springer, 2000
ISBN 10: 0387989358 ISBN 13: 9780387989358
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780387989358_new

Verkäufer kontaktieren

Neu kaufen

EUR 116,05
Währung umrechnen
Versand: EUR 5,75
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb