Verwandte Artikel zu Stochastic Controls: Hamiltonian Systems and HJB Equations:...

Stochastic Controls: Hamiltonian Systems and HJB Equations: 43 (Stochastic Modelling and Applied Probability) - Hardcover

 
9780387987231: Stochastic Controls: Hamiltonian Systems and HJB Equations: 43 (Stochastic Modelling and Applied Probability)

Inhaltsangabe

As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol­ lowing: (Q) What is the relationship betwccn the maximum principlc and dy­ namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa­ tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or­ der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Jiongmin Yong is a professor at the Department of Mathematics, Fudan University, Shanghai, China.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum1999
  • ISBN 10 0387987231
  • ISBN 13 9780387987231
  • EinbandTapa dura
  • SpracheEnglisch
  • Anzahl der Seiten464
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781461271543: Stochastic Controls: Hamiltonian Systems and HJB Equations: 43 (Stochastic Modelling and Applied Probability)

Vorgestellte Ausgabe

ISBN 10:  1461271541 ISBN 13:  9781461271543
Verlag: Springer, 2012
Softcover

Suchergebnisse für Stochastic Controls: Hamiltonian Systems and HJB Equations:...

Foto des Verkäufers

Jiongmin Yong
ISBN 10: 0387987231 ISBN 13: 9780387987231
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. \* An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation. Artikel-Nr. 9780387987231

Verkäufer kontaktieren

Neu kaufen

EUR 201,36
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Yong, Jiongmin; Zhou, Xun Yu
Verlag: Springer, 1999
ISBN 10: 0387987231 ISBN 13: 9780387987231
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In English. Artikel-Nr. ria9780387987231_new

Verkäufer kontaktieren

Neu kaufen

EUR 195,71
Währung umrechnen
Versand: EUR 5,91
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb