An ideal text for an advanced course in the theory of complex functions, this book leads readers to experience function theory personally and to participate in the work of the creative mathematician. The author includes numerous glimpses of the function theory of several complex variables, which illustrate how autonomous this discipline has become. In addition to standard topics, readers will find Eisenstein's proof of Euler's product formula for the sine function; Wielandts uniqueness theorem for the gamma function; Stirlings formula; Isssas theorem; Besses proof that all domains in C are domains of holomorphy; Wedderburns lemma and the ideal theory of rings of holomorphic functions; Estermanns proofs of the overconvergence theorem and Blochs theorem; a holomorphic imbedding of the unit disc in C3; and Gausss expert opinion on Riemanns dissertation. Remmert elegantly presents the material in short clear sections, with compact proofs and historical comments interwoven throughout the text. The abundance of examples, exercises, and historical remarks, as well as the extensive bibliography, combine to make an invaluable source for students and teachers alike
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book is an ideal text for an advanced course in the theory of complex functions. The author leads the reader to experience function theory personally and to participate in the work of the creative mathematician. The book contains numerous glimpses of the function theory of several complex variables, which illustrate how autonomous this discipline has become. Topics covered include Weierstrass's product theorem, Mittag-Leffler's theorem, the Riemann mapping theorem, and Runge's theorems on approximation of analytic functions. In addition to these standard topics, the reader will find Eisenstein's proof of Euler's product formula for the sine function; Wielandt's uniqueness theorem for the gamma function and applications; a detailed discussion of Stirling's formula; Iss'sa's theorem; Besse's proof that all domains in C are domains of holomorphy; Wedderburn's lemma and the ideal theory of rings of holomorphic functions; Estermann's proofs of the overconvergence theorem and Bloch's theorem; a holomorphic imbedding of the unit disc in C(superscript 3); and Gauss's expert opinion of November 1851 on Riemann's dissertation. Remmert presents the material in short clear sections, with compact proofs and historical comments interwoven throughout the text. The abundance of examples, exercises, and historical remarks, as well as the extensive bibliography, will make this book an invaluable source for students and teachers.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 4,53 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Phatpocket Limited, Waltham Abbey, HERTS, Vereinigtes Königreich
Zustand: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, and may have sticker on cover, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Artikel-Nr. Z1-S-022-02896
Anzahl: 1 verfügbar
Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Hardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 30 REM 9780387982212 Sprache: Englisch Gewicht in Gramm: 1150. Artikel-Nr. 2503723
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -An ideal text for an advanced course in the theory of complex functions, this book leads readers to experience function theory personally and to participate in the work of the creative mathematician. The author includes numerous glimpses of the function theory of several complex variables, which illustrate how autonomous this discipline has become. In addition to standard topics, readers will find Eisenstein's proof of Euler's product formula for the sine function; Wielandts uniqueness theorem for the gamma function; Stirlings formula; Isssas theorem; Besses proof that all domains in C are domains of holomorphy; Wedderburns lemma and the ideal theory of rings of holomorphic functions; Estermanns proofs of the overconvergence theorem and Blochs theorem; a holomorphic imbedding of the unit disc in C3; and Gausss expert opinion on Riemanns dissertation. Remmert elegantly presents the material in short clear sections, with compact proofs and historical comments interwoven throughout the text. The abundance of examples, exercises, and historical remarks, as well as the extensive bibliography, combine to make an invaluable source for students and teachers alikeSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 376 pp. Englisch. Artikel-Nr. 9780387982212
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is an ideal text for an advanced course in the theory of complex functions. The author leads the reader to experience function theory personally and to participate in the work of the creative mathematician. The book contains numerous glimpses of the function theory of several complex variables, which illustrate how autonomous this discipline has become. Topics covered include Weierstrass's product theorem, Mittag-Leffler's theorem, the Riemann mapping theorem, and Runge's theorems on approximation of analytic functions. In addition to these standard topics, the reader will find Eisenstein's proof of Euler's product formula for the sine function; Wielandt's uniqueness theorem for the gamma function; a detailed discussion of Stirling's formula; Iss'sa's theorem; Besse's proof that all domains in C are domains of holomorphy; Wedderburn's lemma and the ideal theory of rings of holomorphic functions; Estermann's proofs of the overconvergence theorem and Bloch's theorem; a holomorphic imbedding of the unit disc in C3; and Gauss's expert opinion of November 1851 on Riemann's dissertation. Remmert elegantly presents the material in short clear sections, with compact proofs and historical comments interwoven throughout the text. The abundance of examples, exercises, and historical remarks, as well as the extensive bibliography, will make this book an invaluable source for students and teachers. Artikel-Nr. 9780387982212
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780387982212_new
Anzahl: Mehr als 20 verfügbar