In various fields of science, notably in physics and biology, one is con fronted with periodic phenomena having a remarkable temporal structure: it is as if certain systems are periodically reset in an initial state. A paper of Van der Pol in the Philosophical Magazine of 1926 started up the investigation of this highly nonlinear type of oscillation for which Van der Pol coined the name "relaxation oscillation". The study of relaxation oscillations requires a mathematical analysis which differs strongly from the well-known theory of almost linear oscillations. In this monograph the method of matched asymptotic expansions is employed to approximate the periodic orbit of a relaxation oscillator. As an introduction, in chapter 2 the asymptotic analysis of Van der Pol's equation is carried out in all detail. The problem exhibits all features characteristic for a relaxation oscillation. From this case study one may learn how to handle other or more generally formulated relaxation oscillations. In the survey special attention is given to biological and chemical relaxation oscillators. In chapter 2 a general definition of a relaxation oscillation is formulated.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Artikel-Nr. ABNR-82839
Anbieter: Gwyn Tudur Davies, Aberystwyth, Vereinigtes Königreich
Soft cover. Zustand: Fine. No Jacket. Pbk, xiii, 221 p.Contents : 1. Introduction -- 1.1 The Van der Pol oscillator -- 1.2 Mechanical prototypes of relaxation oscillators -- 1.3 Relaxation oscillations in physics and biology -- 1.4 Discontinuous approximations -- 1.5 Matched asymptotic expansions -- 1.6 Forced oscillations -- 1.7 Mutual entrainment -- 2 Free oscillation -- 2.1 Autonomous relaxation oscillation: definition and existence -- 2.2 Asymptotic solution of the Van der Pol equation -- 2.3 The Volterra-Lotka equations -- 2.4 Chemical oscillations -- 2.5 Bifurcation of the Van der Pol equation with a constant forcing term -- 2.6 Stochastic and chaotic oscillations -- 3. Forced oscillation and mutual entrainment -- 3.1 Modeling coupled oscillations -- 3.2 A rigorous theory for weakly coupled oscillators -- 3.3 Coupling of two oscillators -- 4. The Van der Pol oscillator with a sinusoidal forcing term -- 4.1 Qualitative methods of analysis -- 4.2 Asymptotic solution of the Van der Pol equation with a moderate forcing term -- 4.2 Asymptotic solution of the Van der Pol equation with a large forcing term -- 4.3 Asymptotic solution of the Van der Pol equation with a large forcing term -- Appendices -- A: Asymptotics of some special functions -- B: Asymptotic ordering and expansions -- C: Concepts of the theory of dynamical systems -- D: Stochastic differential equations and diffusion approximations [Mathematical physics - Theoretical, Mathematical and Computational Physics. Asymptotic expansions - Differential equations, Nonlinear Asymptotic theory - Oscillations - Mathematical physics] r1090 / m16709. Artikel-Nr. 016709
Anzahl: 1 verfügbar
Anbieter: Antiquariat Bernhardt, Kassel, Deutschland
kartoniert. Zustand: Sehr gut. Zust: Gutes Exemplar. 240 Seiten Englisch 346g. Artikel-Nr. 482309
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Artikel-Nr. 5912759
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In various fields of science, notably in physics and biology, one is con fronted with periodic phenomena having a remarkable temporal structure: it is as if certain systems are periodically reset in an initial state. A paper of Van der Pol in the Philosophical Magazine of 1926 started up the investigation of this highly nonlinear type of oscillation for which Van der Pol coined the name 'relaxation oscillation'. The study of relaxation oscillations requires a mathematical analysis which differs strongly from the well-known theory of almost linear oscillations. In this monograph the method of matched asymptotic expansions is employed to approximate the periodic orbit of a relaxation oscillator. As an introduction, in chapter 2 the asymptotic analysis of Van der Pol's equation is carried out in all detail. The problem exhibits all features characteristic for a relaxation oscillation. From this case study one may learn how to handle other or more generally formulated relaxation oscillations. In the survey special attention is given to biological and chemical relaxation oscillators. In chapter 2 a general definition of a relaxation oscillation is formulated. Artikel-Nr. 9780387965130
Anzahl: 1 verfügbar