The problem of controlling or stabilizing a system of differential equa tions in the presence of random disturbances is intuitively appealing and has been a motivating force behind a wide variety of results grouped loosely together under the heading of "Stochastic Control." This book is concerned with a special instance of this general problem, the "Adaptive LQ Regulator," which is a stochastic control problem of partially observed type that can, in certain cases, be solved explicitly. We first describe this problem, as it is the focal point for the entire book, and then describe the contents of the book. The problem revolves around an uncertain linear system x(O) = x~ in R", where 0 E {1, ... , N} is a random variable representing this uncertainty and (Ai' B , C) and xJ are the coefficient matrices and initial state, respectively, of j j a linear control system, for eachj = 1, ... , N. A common assumption is that the mechanism causing this uncertainty is additive noise, and that conse quently the "controller" has access only to the observation process y( . ) where y = Cex +~.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The problem of controlling or stabilizing a system of differential equa tions in the presence of random disturbances is intuitively appealing and has been a motivating force behind a wide variety of results grouped loosely together under the heading of "Stochastic Control." This book is concerned with a special instance of this general problem, the "Adaptive LQ Regulator," which is a stochastic control problem of partially observed type that can, in certain cases, be solved explicitly. We first describe this problem, as it is the focal point for the entire book, and then describe the contents of the book. The problem revolves around an uncertain linear system x(O) = x~ in R", where 0 E {1, ... , N} is a random variable representing this uncertainty and (Ai' B , C) and xJ are the coefficient matrices and initial state, respectively, of j j a linear control system, for eachj = 1, ... , N. A common assumption is that the mechanism causing this uncertainty is additive noise, and that conse quently the "controller" has access only to the observation process y( . ) where y = Cex +~.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,20 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Deutschland
gebundene Ausgabe. Zustand: Gut. 129 Seiten Das hier angebotene Buch stammt aus einer teilaufgelösten Bibliothek und kann die entsprechenden Kennzeichnungen aufweisen (Rückenschild, Instituts-Stempel.); der Buchzustand ist ansonsten ordentlich und dem Alter entsprechend gut. In ENGLISCHER Sprache. Sprache: Englisch Gewicht in Gramm: 380. Artikel-Nr. 2235005
Anzahl: 1 verfügbar
Anbieter: ThriftBooks-Dallas, Dallas, TX, USA
Hardcover. Zustand: Very Good. No Jacket. Missing dust jacket; May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 0.84. Artikel-Nr. G0387963847I4N01
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Artikel-Nr. 458432706
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780387963846_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 144 3 Illus. Artikel-Nr. 5591003
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - The problem of controlling or stabilizing a system of differential equa tions in the presence of random disturbances is intuitively appealing and has been a motivating force behind a wide variety of results grouped loosely together under the heading of 'Stochastic Control.' This book is concerned with a special instance of this general problem, the 'Adaptive LQ Regulator,' which is a stochastic control problem of partially observed type that can, in certain cases, be solved explicitly. We first describe this problem, as it is the focal point for the entire book, and then describe the contents of the book. The problem revolves around an uncertain linear system x(O) = x~ in R', where 0 E {1, . , N} is a random variable representing this uncertainty and (Ai' B , C) and xJ are the coefficient matrices and initial state, respectively, of j j a linear control system, for eachj = 1, . , N. A common assumption is that the mechanism causing this uncertainty is additive noise, and that conse quently the 'controller' has access only to the observation process y( . ) where y = Cex +~. Artikel-Nr. 9780387963846
Anzahl: 2 verfügbar