Verwandte Artikel zu Robust and Nonlinear Time Series Analysis: Proceedings...

Robust and Nonlinear Time Series Analysis: Proceedings of a Workshop Organized by the Sonderforschungsbereich 123 ''Stochastische Mathematische ... 1983: 26 (Lecture Notes in Statistics) - Softcover

 
9780387961026: Robust and Nonlinear Time Series Analysis: Proceedings of a Workshop Organized by the Sonderforschungsbereich 123 ''Stochastische Mathematische ... 1983: 26 (Lecture Notes in Statistics)

Inhaltsangabe

Classical time series methods are based on the assumption that a particular stochastic process model generates the observed data. The, most commonly used assumption is that the data is a realization of a stationary Gaussian process. However, since the Gaussian assumption is a fairly stringent one, this assumption is frequently replaced by the weaker assumption that the process is wide~sense stationary and that only the mean and covariance sequence is specified. This approach of specifying the probabilistic behavior only up to "second order" has of course been extremely popular from a theoretical point of view be­ cause it has allowed one to treat a large variety of problems, such as prediction, filtering and smoothing, using the geometry of Hilbert spaces. While the literature abounds with a variety of optimal estimation results based on either the Gaussian assumption or the specification of second-order properties, time series workers have not always believed in the literal truth of either the Gaussian or second-order specifica­ tion. They have none-the-less stressed the importance of such optimali­ ty results, probably for two main reasons: First, the results come from a rich and very workable theory. Second, the researchers often relied on a vague belief in a kind of continuity principle according to which the results of time series inference would change only a small amount if the actual model deviated only a small amount from the assum­ ed model.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Classical time series methods are based on the assumption that a particular stochastic process model generates the observed data. The, most commonly used assumption is that the data is a realization of a stationary Gaussian process. However, since the Gaussian assumption is a fairly stringent one, this assumption is frequently replaced by the weaker assumption that the process is wide~sense stationary and that only the mean and covariance sequence is specified. This approach of specifying the probabilistic behavior only up to "second order" has of course been extremely popular from a theoretical point of view be­ cause it has allowed one to treat a large variety of problems, such as prediction, filtering and smoothing, using the geometry of Hilbert spaces. While the literature abounds with a variety of optimal estimation results based on either the Gaussian assumption or the specification of second-order properties, time series workers have not always believed in the literal truth of either the Gaussian or second-order specifica­ tion. They have none-the-less stressed the importance of such optimali­ ty results, probably for two main reasons: First, the results come from a rich and very workable theory. Second, the researchers often relied on a vague belief in a kind of continuity principle according to which the results of time series inference would change only a small amount if the actual model deviated only a small amount from the assum­ ed model.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut
25 cm Lecture Notes in Statistics...
Diesen Artikel anzeigen

EUR 9,95 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

EUR 13,85 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781461578222: Robust and Nonlinear Time Series Analysis: Proceedings of a Workshop Organized by the Sonderforschungsbereich 123 "Stochastische Mathematische Modelle", Heidelberg 1983

Vorgestellte Ausgabe

ISBN 10:  1461578221 ISBN 13:  9781461578222
Verlag: Springer, 2012
Softcover

Suchergebnisse für Robust and Nonlinear Time Series Analysis: Proceedings...

Foto des Verkäufers

Franke, Jürgen [Hrsg.]
ISBN 10: 038796102X ISBN 13: 9780387961026
Gebraucht Kartoniert

Anbieter: Antiquariat Lücke, Einzelunternehmung, Schweinfurt, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Kartoniert. Zustand: Gut. 25 cm Lecture Notes in Statistics, 26. VII, 286 S. Orig.-Karton. Mit graphischen Darstellungen. Gutes Exemplar. Artikel-Nr. 31035

Verkäufer kontaktieren

Gebraucht kaufen

EUR 28,00
Währung umrechnen
Versand: EUR 9,95
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Wolfgang Härdle, Jürgen Franke
Verlag: Springer, 1984
ISBN 10: 038796102X ISBN 13: 9780387961026
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780387961026_new

Verkäufer kontaktieren

Neu kaufen

EUR 116,22
Währung umrechnen
Versand: EUR 13,85
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

J. Franke
ISBN 10: 038796102X ISBN 13: 9780387961026
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Classical time series methods are based on the assumption that a particular stochastic process model generates the observed data. The, most commonly used assumption is that the data is a realization of a stationary Gaussian process. However, since the Gaussian assumption is a fairly stringent one, this assumption is frequently replaced by the weaker assumption that the process is wide~sense stationary and that only the mean and covariance sequence is specified. This approach of specifying the probabilistic behavior only up to 'second order' has of course been extremely popular from a theoretical point of view be cause it has allowed one to treat a large variety of problems, such as prediction, filtering and smoothing, using the geometry of Hilbert spaces. While the literature abounds with a variety of optimal estimation results based on either the Gaussian assumption or the specification of second-order properties, time series workers have not always believed in the literal truth of either the Gaussian or second-order specifica tion. They have none-the-less stressed the importance of such optimali ty results, probably for two main reasons: First, the results come from a rich and very workable theory. Second, the researchers often relied on a vague belief in a kind of continuity principle according to which the results of time series inference would change only a small amount if the actual model deviated only a small amount from the assum ed model. Artikel-Nr. 9780387961026

Verkäufer kontaktieren

Neu kaufen

EUR 114,36
Währung umrechnen
Versand: EUR 62,61
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Franke, J./ Hardle, W./ Martin, D. (Editor)
Verlag: Springer Verlag, 1985
ISBN 10: 038796102X ISBN 13: 9780387961026
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 1st edition. 286 pages. 9.75x6.75x0.75 inches. In Stock. Artikel-Nr. x-038796102X

Verkäufer kontaktieren

Neu kaufen

EUR 151,54
Währung umrechnen
Versand: EUR 28,90
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb