Verwandte Artikel zu Stochastic Processes and Orthogonal Polynomials: 146...

Stochastic Processes and Orthogonal Polynomials: 146 (Lecture Notes in Statistics) - Softcover

 
9780387950150: Stochastic Processes and Orthogonal Polynomials: 146 (Lecture Notes in Statistics)

Inhaltsangabe

It has been known for a long time that there is a close connection between stochastic processes and orthogonal polynomials. For example, N. Wiener [112] and K. Ito [56] knew that Hermite polynomials play an important role in the integration theory with respect to Brownian motion. In the 1950s D. G. Kendall [66], W. Ledermann and G. E. H. Reuter [67] [74], and S. Kar­ lin and J. L. McGregor [59] established another important connection. They expressed the transition probabilities of a birth and death process by means of a spectral representation, the so-called Karlin-McGregor representation, in terms of orthogonal polynomials. In the following years these relation­ ships were developed further. Many birth and death models were related to specific orthogonal polynomials. H. Ogura [87], in 1972, and D. D. En­ gel [45], in 1982, found an integral relation between the Poisson process and the Charlier polynomials. Some people clearly felt the potential im­ portance of orthogonal polynomials in probability theory. For example, P. Diaconis and S. Zabell [29] related Stein equations for some well-known distributions, including Pearson’s class, with the corresponding orthogonal polynomials. The most important orthogonal polynomials are brought together in the so-called Askey scheme of orthogonal polynomials. This scheme classifies the hypergeometric orthogonal polynomials that satisfy some type of differ­ ential or difference equation and stresses the limit relations between them.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

It has been known for a long time that there is a close connection between stochastic processes and orthogonal polynomials. For example, N. Wiener [112] and K. Ito [56] knew that Hermite polynomials play an important role in the integration theory with respect to Brownian motion. In the 1950s D. G. Kendall [66], W. Ledermann and G. E. H. Reuter [67] [74], and S. Kar­ lin and J. L. McGregor [59] established another important connection. They expressed the transition probabilities of a birth and death process by means of a spectral representation, the so-called Karlin-McGregor representation, in terms of orthogonal polynomials. In the following years these relation­ ships were developed further. Many birth and death models were related to specific orthogonal polynomials. H. Ogura [87], in 1972, and D. D. En­ gel [45], in 1982, found an integral relation between the Poisson process and the Charlier polynomials. Some people clearly felt the potential im­ portance of orthogonal polynomials in probability theory. For example, P. Diaconis and S. Zabell [29] related Stein equations for some well-known distributions, including Pearson's class, with the corresponding orthogonal polynomials. The most important orthogonal polynomials are brought together in the so-called Askey scheme of orthogonal polynomials. This scheme classifies the hypergeometric orthogonal polynomials that satisfy some type of differ­ ential or difference equation and stresses the limit relations between them.

Reseña del editor

The book offers an accessible reference for researchers in the probability, statistics and special functions communities. It gives a variety of interdisciplinary relations between the two main ingredients of stochastic processes and orthogonal polynomials. It covers topics like time dependent and asymptotic analysis for birth-death processes and diffusions, martingale relations for Lévy processes, stochastic integrals and Stein's approximation method. Almost all well-known orthogonal polynomials, which are brought together in the so-called Askey Scheme, come into play. This volume clearly illustrates the powerful mathematical role of orthogonal polynomials in the analysis of stochastic processes and is made accessible for all mathematicians with a basic background in probability theory and mathematical analysis. Wim Schoutens is a Postdoctoral Researcher of the Fund for Scientific Research-Flanders (Belgium). He received his PhD in Science from the Catholic University of Leuven, Belgium.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut
May have limited writing in cover...
Diesen Artikel anzeigen

Gratis für den Versand innerhalb von/der USA

Versandziele, Kosten & Dauer

EUR 13,75 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781461211716: Stochastic Processes and Orthogonal Polynomials

Vorgestellte Ausgabe

ISBN 10:  1461211719 ISBN 13:  9781461211716
Verlag: Springer, 2011
Softcover

Suchergebnisse für Stochastic Processes and Orthogonal Polynomials: 146...

Beispielbild für diese ISBN

Schoutens, Wim
Verlag: Springer, 2000
ISBN 10: 038795015X ISBN 13: 9780387950150
Gebraucht Paperback

Anbieter: ThriftBooks-Atlanta, AUSTELL, GA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 0.59. Artikel-Nr. G038795015XI4N00

Verkäufer kontaktieren

Gebraucht kaufen

EUR 52,36
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Schoutens, Wim:
ISBN 10: 038795015X ISBN 13: 9780387950150
Gebraucht Broschiert

Anbieter: Antiquariat Bernhardt, Kassel, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Broschiert. Zustand: Sehr gut. Lecture Notes in Statistics, Band 146. Zust: Gutes Exemplar. XIII, 163 Seiten, Englisch 270g. Artikel-Nr. 493407

Verkäufer kontaktieren

Gebraucht kaufen

EUR 82,00
Währung umrechnen
Versand: EUR 35,95
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Schoutens, Wim
Verlag: Springer, 2000
ISBN 10: 038795015X ISBN 13: 9780387950150
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780387950150_new

Verkäufer kontaktieren

Neu kaufen

EUR 111,31
Währung umrechnen
Versand: EUR 13,75
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Wim Schoutens
ISBN 10: 038795015X ISBN 13: 9780387950150
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -It has been known for a long time that there is a close connection between stochastic processes and orthogonal polynomials. For example, N. Wiener [112] and K. Ito [56] knew that Hermite polynomials play an important role in the integration theory with respect to Brownian motion. In the 1950s D. G. Kendall [66], W. Ledermann and G. E. H. Reuter [67] [74], and S. Kar lin and J. L. McGregor [59] established another important connection. They expressed the transition probabilities of a birth and death process by means of a spectral representation, the so-called Karlin-McGregor representation, in terms of orthogonal polynomials. In the following years these relation ships were developed further. Many birth and death models were related to specific orthogonal polynomials. H. Ogura [87], in 1972, and D. D. En gel [45], in 1982, found an integral relation between the Poisson process and the Charlier polynomials. Some people clearly felt the potential im portance of orthogonal polynomials in probability theory. For example, P. Diaconis and S. Zabell [29] related Stein equations for some well-known distributions, including Pearson's class, with the corresponding orthogonal polynomials. The most important orthogonal polynomials are brought together in the so-called Askey scheme of orthogonal polynomials. This scheme classifies the hypergeometric orthogonal polynomials that satisfy some type of differ ential or difference equation and stresses the limit relations between them.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 184 pp. Englisch. Artikel-Nr. 9780387950150

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: EUR 60,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Wim Schoutens
ISBN 10: 038795015X ISBN 13: 9780387950150
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - It has been known for a long time that there is a close connection between stochastic processes and orthogonal polynomials. For example, N. Wiener [112] and K. Ito [56] knew that Hermite polynomials play an important role in the integration theory with respect to Brownian motion. In the 1950s D. G. Kendall [66], W. Ledermann and G. E. H. Reuter [67] [74], and S. Kar lin and J. L. McGregor [59] established another important connection. They expressed the transition probabilities of a birth and death process by means of a spectral representation, the so-called Karlin-McGregor representation, in terms of orthogonal polynomials. In the following years these relation ships were developed further. Many birth and death models were related to specific orthogonal polynomials. H. Ogura [87], in 1972, and D. D. En gel [45], in 1982, found an integral relation between the Poisson process and the Charlier polynomials. Some people clearly felt the potential im portance of orthogonal polynomials in probability theory. For example, P. Diaconis and S. Zabell [29] related Stein equations for some well-known distributions, including Pearson's class, with the corresponding orthogonal polynomials. The most important orthogonal polynomials are brought together in the so-called Askey scheme of orthogonal polynomials. This scheme classifies the hypergeometric orthogonal polynomials that satisfy some type of differ ential or difference equation and stresses the limit relations between them. Artikel-Nr. 9780387950150

Verkäufer kontaktieren

Neu kaufen

EUR 112,77
Währung umrechnen
Versand: EUR 61,45
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb