Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer H -> 2, and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. By contrast, in an inverse problem, one starts with a sumset hA, and attempts to describe the structure of the underlying set A. In recent years there has been ramrkable progress in the study of inverse problems for finite sets of integers. In particular, there are important and beautiful inverse theorems due to Freiman, Kneser, Plünnecke, Vosper, and others. This volume includes their results, and culminates with an elegant proof by Ruzsa of the deep theorem of Freiman that a finite set of integers with a small sumset must be a large subset of an n-dimensional arithmetic progression.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer h(actual symbol not reproducible)2 and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. In contrast, in an inverse problem, one starts with a sumset hA and attempts to describe the structure of the underlying set A. In recent years, there has been remarkable progress in the study of inverse problems for finite sets of integers. In particular, there are important and beautiful inverse theorems due to Freiman, Kneser, Plunnecke, Vospel and others. This volume includes their results and culminates with an elegant proof by Rusza of the deep theorem of Freiman that a finite set of integers with a small sumset must be a large subset of an n-dimensional arithmetic progression. Inverse problems are a central topic in additive number theory. This graduate text gives a comprehensive and self-contained account of this subject. In particular, it contains complete proofs of results from exterior algebra, combinatorics, graph theory, and the geometry of numbers that are used in the proofs of the principal inverse theorems. The only prerequisites for the book are undergraduate courses in algebra, number theory, and analysis.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: BooksRun, Philadelphia, PA, USA
Hardcover. Zustand: Very Good. 1996. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting. Artikel-Nr. 0387946551-8-1
Anzahl: 1 verfügbar
Anbieter: Antiquariat Bernhardt, Kassel, Deutschland
Karton. Zustand: Sehr gut. Zust: Gutes Exemplar. 293 Seiten, mit Abbildungen, Englisch 598g. Artikel-Nr. 494621
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer H -> 2, and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. By contrast, in an inverse problem, one starts with a sumset hA, and attempts to describe the structure of the underlying set A. In recent years there has been ramrkable progress in the study of inverse problems for finite sets of integers. In particular, there are important and beautiful inverse theorems due to Freiman, Kneser, Plünnecke, Vosper, and others. This volume includes their results, and culminates with an elegant proof by Ruzsa of the deep theorem of Freiman that a finite set of integers with a small sumset must be a large subset of an n-dimensional arithmetic progression.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 312 pp. Englisch. Artikel-Nr. 9780387946559
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
hardcover. Zustand: Neu. Neu Neuware, Importqualität, auf Lager - Many classical problems in additive number theory are direct problems, in which one starts with a set A of natural numbers and an integer H -> 2, and tries to describe the structure of the sumset hA consisting of all sums of h elements of A. By contrast, in an inverse problem, one starts with a sumset hA, and attempts to describe the structure of the underlying set A. In recent years there has been ramrkable progress in the study of inverse problems for finite sets of integers. In particular, there are important and beautiful inverse theorems due to Freiman, Kneser, Plünnecke, Vosper, and others. This volume includes their results, and culminates with an elegant proof by Ruzsa of the deep theorem of Freiman that a finite set of integers with a small sumset must be a large subset of an n-dimensional arithmetic progression. Artikel-Nr. INF1000663858
Anzahl: 1 verfügbar