A Probabilistic Theory of Pattern Recognition: 31 (Stochastic Modelling and Applied Probability) - Hardcover

Buch 1 von 30: Stochastic Modelling and Applied Probability

Lugosi, Gabor; Gyorfi, Laszlo; Devroye, Luc

 
9780387946184: A Probabilistic Theory of Pattern Recognition: 31 (Stochastic Modelling and Applied Probability)

Inhaltsangabe

A self-contained and coherent account of probabilistic techniques, covering: distance measures, kernel rules, nearest neighbour rules, Vapnik-Chervonenkis theory, parametric classification, and feature extraction. Each chapter concludes with problems and exercises to further the readers understanding. Both research workers and graduate students will benefit from this wide-ranging and up-to-date account of a fast- moving field.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Von der hinteren Coverseite

Pattern recognition presents one of the most significant challenges for scientists and engineers, and many different approaches have been proposed. The aim of this book is to provide a self-contained account of probabilistic analysis of these approaches. The book includes a discussion of distance measures, nonparametric methods based on kernels or nearest neighbors, Vapnik-Chervonenkis theory, epsilon entropy, parametric classification, error estimation, tree classifiers, and neural networks. Wherever possible, distribution-free properties and inequalities are derived. A substantial portion of the results or the analysis is new. Over 430 problems and exercises complement the material.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Weitere beliebte Ausgaben desselben Titels

9781461268772: A Probabilistic Theory of Pattern Recognition: 31 (Stochastic Modelling and Applied Probability)

Vorgestellte Ausgabe

ISBN 10:  146126877X ISBN 13:  9781461268772
Verlag: Springer, 2013
Softcover