Verwandte Artikel zu MODULAR FORMS AND FERMAT'S LAST THEOREM

MODULAR FORMS AND FERMAT'S LAST THEOREM - Hardcover

 
9780387946092: MODULAR FORMS AND FERMAT'S LAST THEOREM

Inhaltsangabe

This volume contains expanded versions of lectures given at an instructional conference on number theory and arithmetic geometry held August 9 through 18, 1995 at Boston University. The purpose of the conference, and of this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof that every (semi- stable) elliptic curve over Q is modular, and to explain how Wiles' result can be combined with Ribet's theorem and ideas of Frey and Serre to show, at long last, that Fermat's Last Theorem is true. Contributors to this volume include: B. Conrad, H. Darmon, E. de Shalit, B. de Smit, F. Diamond, S.J. Edixhoven, G. Frey, S. Gelbart, K. Kramer, H.W. Lenstra, Jr., B. Mazur, K. Ribet, D.E. Rohrlich, M. Rosen, K. Rubin, R. Schoof, A. Silverberg, J.H. Silverman, P. Stevenhagen, G. Stevens, J. Tate, J. Tilouine, and L. Washington. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions, modular curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of Wiles' proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serre's conjectures, Galois deformations, universal deformation rings, Hecke algebras, complete intersections and more, as the reader is led step-by-step through Wiles' proof. In recognition of the historical significance of Fermat's Last Theorem, the volume concludes by looking both forward and backward in time, reflecting on the history of the problem, while placing Wiles' theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this volume to be an indispensable

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

This volume contains expanded versions of lectures given at an instructional conference on number theory and arithmetic geometry held August 9 through 18, 1995 at Boston University. The purpose of the conference, and of this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof that every (semi- stable) elliptic curve over Q is modular, and to explain how Wiles' result can be combined with Ribet's theorem and ideas of Frey and Serre to show, at long last, that Fermat's Last Theorem is true. Contributors to this volume include: B. Conrad, H. Darmon, E. de Shalit, B. de Smit, F. Diamond, S.J. Edixhoven, G. Frey, S. Gelbart, K. Kramer, H.W. Lenstra, Jr., B. Mazur, K. Ribet, D.E. Rohrlich, M. Rosen, K. Rubin, R. Schoof, A. Silverberg, J.H. Silverman, P. Stevenhagen, G. Stevens, J. Tate, J. Tilouine, and L. Washington. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions, modular curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of Wiles' proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serre's conjectures, Galois deformations, universal deformation rings, Hecke algebras, complete intersections and more, as the reader is led step-by-step through Wiles' proof. In recognition of the historical significance of Fermat's Last Theorem, the volume concludes by looking both forward and backward in time, reflecting on the history of the problem, while placing Wiles' theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this volume to be an indispensable

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer Verlag
  • Erscheinungsdatum1998
  • ISBN 10 0387946098
  • ISBN 13 9780387946092
  • EinbandTapa dura
  • SpracheEnglisch
  • Auflage2
  • Anzahl der Seiten582
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Sehr gut
582 Seiten This volume contains...
Diesen Artikel anzeigen

EUR 2,99 für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

EUR 5,93 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780387989983: Modular Forms and Fermat's Last Theorem

Vorgestellte Ausgabe

ISBN 10:  0387989986 ISBN 13:  9780387989983
Verlag: Springer, 2009
Softcover

Suchergebnisse für MODULAR FORMS AND FERMAT'S LAST THEOREM

Foto des Verkäufers

Cornell, Gary, Joseph H. Silverman and Glenn Stevens:
Verlag: Springer 06.1998., 1998
ISBN 10: 0387946098 ISBN 13: 9780387946092
Gebraucht Hardcover

Anbieter: Antiquariat Jochen Mohr -Books and Mohr-, Oberthal, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

hardcover. Zustand: Sehr gut. 2., corr. Printing. 582 Seiten This volume contains expanded versions of lectures given at an instructional conference on number theory and arithmetic geometry held August 9 through 18, 1995 at Boston University. The purpose of the conference, and of this book, is to introduce and explain the many ideas and techniques used by Wiles in his proof that every (semi- stable) elliptic curve over Q is modular, and to explain how Wiles' result can be combined with Ribet's theorem and ideas of Frey and Serre to show, at long last, that Fermat's Last Theorem is true. Contributors to this volume include: B. Conrad, H. Darmon, E. de Shalit, B. de Smit, F. Diamond, S.J. Edixhoven, G. Frey, S. Gelbart, K. Kramer, H.W. Lenstra, Jr., B. Mazur, K. Ribet, D.E. Rohrlich, M. Rosen, K. Rubin, R. Schoof, A. Silverberg, J.H. Silverman, P. Stevenhagen, G. Stevens, J. Tate, J. Tilouine, and L. Washington. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions, modular curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of Wiles' proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serre's conjectures, Galois deformations, universal deformation rings, Hecke algebras, complete intersections and more, as the reader is led step-by-step through Wiles' proof. In recognition of the historical significance of Fermat's Last Theorem, the volume concludes by looking both forward and backward in time, reflecting on the history of the problem, while placing Wiles' theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this volume to be an indispensable TOC:Preface.- Contributors.- Schedule of Lectures.- Introduction.- An Overview of the Proof of Fermat's Last Theorem.- A Survey of the Arithmetic Theory of Elliptic Curves.- Modular Curves, Hecke Correspondences, and L-Functions.- Galois Cohomology.- Finite Flat Group Schemes.- Three Lectures on the Modularity of PE.3 and the Langlands Reciprocity Conjecture.- Serre's Conjectures.- An Introduction to the Deformation Theory of Galois Representations.- Explicit Construction of Universal Deformation Rings.- Hecke Algebras and the Gorenstein Property.- Criteria for Complete Intersections.- l-adic Modular Deformations and Wiles's "Main Conjecture".- The Flat Deformation Functor.- Hecke Rings and Universal Deformation Rings.- Explicit Families of Elliptic Curves with Prescribed Mod N Representations.- Modularity of Mod 5 Representations.- An Extension of Wiles' Results.- Appendix to Chapter 17: Classification of PE.1 by the j Invariant of E.- Class Field Theory and the First Case of Fermat's Last Theorem.- Remarks on the History of Fermat's Last Theorem 1844 to 1984.- On Ternary Equations of Fermat Type and Relations with Elliptic Curves.- Wiles' Theorem and the Arithmetic of Elliptic Curves. 9780387946092 Wir verkaufen nur, was wir auch selbst lesen würden. Sprache: Deutsch Gewicht in Gramm: 967. Artikel-Nr. 88758

Verkäufer kontaktieren

Gebraucht kaufen

EUR 57,19
Währung umrechnen
Versand: EUR 2,99
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Cornell, G. (ed)
Verlag: Springer-Verlag, 1998
ISBN 10: 0387946098 ISBN 13: 9780387946092
Gebraucht Hardcover

Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1050grams, ISBN:9780387946092. Artikel-Nr. 4840799

Verkäufer kontaktieren

Gebraucht kaufen

EUR 76,17
Währung umrechnen
Versand: EUR 8,00
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Cornell, Gary; Silverman, Joseph-H; Stevens, Glenn
Verlag: Springer, 2000
ISBN 10: 0387946098 ISBN 13: 9780387946092
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780387946092_new

Verkäufer kontaktieren

Neu kaufen

EUR 107,01
Währung umrechnen
Versand: EUR 5,93
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb