Fundamentals of Diophantine Geometry

0 durchschnittliche Bewertung
( 0 Bewertungen bei Goodreads )
 
9780387908373: Fundamentals of Diophantine Geometry

Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Neu kaufen Angebot ansehen

Versand: EUR 29,50
Von Deutschland nach USA

Versandziele, Kosten & Dauer

In den Warenkorb

Beste Suchergebnisse beim ZVAB

1.

S. Lang
Verlag: Springer Aug 1983 (1983)
ISBN 10: 0387908374 ISBN 13: 9780387908373
Neu Anzahl: 1
Anbieter
AHA-BUCH GmbH
(Einbeck, Deutschland)
Bewertung
[?]

Buchbeschreibung Springer Aug 1983, 1983. Buch. Buchzustand: Neu. Neuware - Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points. 392 pp. Englisch. Artikel-Nr. 9780387908373

Weitere Informationen zu diesem Verkäufer | Frage an den Anbieter

Neu kaufen
EUR 99,99
Währung umrechnen

In den Warenkorb

Versand: EUR 29,50
Von Deutschland nach USA
Versandziele, Kosten & Dauer