The small book by Shimura-Taniyama on the subject of complex multi is a classic. It gives the results obtained by them (and some by Weil) plication in the higher dimensional case, generalizing in a non-trivial way the method of Deuring for elliptic curves, by reduction mod p. Partly through the work of Shimura himself (cf. [Sh 1] [Sh 2], and [Sh 5]), and some others (Serre, Tate, Kubota, Ribet, Deligne etc.) it is possible today to make a more snappy and extensive presentation of the fundamental results than was possible in 1961. Several persons have found my lecture notes on this subject useful to them, and so I have decided to publish this short book to make them more widely available. Readers acquainted with the standard theory of abelian varieties, and who wish to get rapidly an idea of the fundamental facts of complex multi plication, are advised to look first at the two main theorems, Chapter 3, §6 and Chapter 4, §1, as well as the rest of Chapter 4. The applications of Chapter 6 could also be profitably read early. I am much indebted to N. Schappacher for a careful reading of the manu script resulting in a number of useful suggestions. S. LANG Contents CHAPTER 1 Analytic Complex Multiplication 4 I. Positive Definite Involutions . . . 6 2. CM Types and Subfields. . . . . 8 3. Application to Abelian Manifolds. 4. Construction of Abelian Manifolds with CM 14 21 5. Reflex of a CM Type . . . . .
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The small book by Shimura-Taniyama on the subject of complex multi is a classic. It gives the results obtained by them (and some by Weil) plication in the higher dimensional case, generalizing in a non-trivial way the method of Deuring for elliptic curves, by reduction mod p. Partly through the work of Shimura himself (cf. [Sh 1] [Sh 2], and [Sh 5]), and some others (Serre, Tate, Kubota, Ribet, Deligne etc.) it is possible today to make a more snappy and extensive presentation of the fundamental results than was possible in 1961. Several persons have found my lecture notes on this subject useful to them, and so I have decided to publish this short book to make them more widely available. Readers acquainted with the standard theory of abelian varieties, and who wish to get rapidly an idea of the fundamental facts of complex multi plication, are advised to look first at the two main theorems, Chapter 3, §6 and Chapter 4, §1, as well as the rest of Chapter 4. The applications of Chapter 6 could also be profitably read early. I am much indebted to N. Schappacher for a careful reading of the manu script resulting in a number of useful suggestions. S. LANG Contents CHAPTER 1 Analytic Complex Multiplication 4 I. Positive Definite Involutions . . . 6 2. CM Types and Subfields. . . . . 8 3. Application to Abelian Manifolds. 4. Construction of Abelian Manifolds with CM 14 21 5. Reflex of a CM Type . . . . .
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,88 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 48,99 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerAnbieter: Zubal-Books, Since 1961, Cleveland, OH, USA
Zustand: Fine. 196 pp., hardcover, a small dent to edge of front cover else fine. MODERN PRINTING (glossy covers). - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Artikel-Nr. ZB1333610
Anzahl: 1 verfügbar
Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich
Zustand: Fair. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In fair condition, suitable as a study copy. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,550grams, ISBN:0387907866. Artikel-Nr. 5848359
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Artikel-Nr. 5911750
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -The small book by Shimura-Taniyama on the subject of complex multi is a classic. It gives the results obtained by them (and some by Weil) plication in the higher dimensional case, generalizing in a non-trivial way the method of Deuring for elliptic curves, by reduction mod p. Partly through the work of Shimura himself (cf. [Sh 1] [Sh 2], and [Sh 5]), and some others (Serre, Tate, Kubota, Ribet, Deligne etc.) it is possible today to make a more snappy and extensive presentation of the fundamental results than was possible in 1961. Several persons have found my lecture notes on this subject useful to them, and so I have decided to publish this short book to make them more widely available. Readers acquainted with the standard theory of abelian varieties, and who wish to get rapidly an idea of the fundamental facts of complex multi plication, are advised to look first at the two main theorems, Chapter 3, 6 and Chapter 4, 1, as well as the rest of Chapter 4. The applications of Chapter6 could also be profitably read early. I am much indebted to N. Schappacher for a careful reading of the manu script resulting in a number of useful suggestions. S. LANG Contents CHAPTER 1 Analytic Complex Multiplication 4 I. Positive Definite Involutions . . . 6 2. CM Types and Subfields. . . . . 8 3. Application to Abelian Manifolds. 4. Construction of Abelian Manifolds with CM 14 21 5. Reflex of a CM Type . . . . .Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 196 pp. Englisch. Artikel-Nr. 9780387907864
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The small book by Shimura-Taniyama on the subject of complex multi is a classic. It gives the results obtained by them (and some by Weil) plication in the higher dimensional case, generalizing in a non-trivial way the method of Deuring for elliptic curves, by reduction mod p. Partly through the work of Shimura himself (cf. [Sh 1] [Sh 2], and [Sh 5]), and some others (Serre, Tate, Kubota, Ribet, Deligne etc.) it is possible today to make a more snappy and extensive presentation of the fundamental results than was possible in 1961. Several persons have found my lecture notes on this subject useful to them, and so I have decided to publish this short book to make them more widely available. Readers acquainted with the standard theory of abelian varieties, and who wish to get rapidly an idea of the fundamental facts of complex multi plication, are advised to look first at the two main theorems, Chapter 36 and Chapter 41, as well as the rest of Chapter 4. The applications of Chapter6 could also be profitably read early. I am much indebted to N. Schappacher for a careful reading of the manu script resulting in a number of useful suggestions. S. LANG Contents CHAPTER 1 Analytic Complex Multiplication 4 I. Positive Definite Involutions . . . 6 2. CM Types and Subfields. . . . . 8 3. Application to Abelian Manifolds. 4. Construction of Abelian Manifolds with CM 14 21 5. Reflex of a CM Type . . . . . Artikel-Nr. 9780387907864
Anzahl: 1 verfügbar