This book grew out of lectures on Riemann surfaces which the author gave at the universities of Munich, Regensburg and Munster. Its aim is to give an introduction to this rich and beautiful subject, while presenting methods from the theory of complex manifolds which, in the special case of one complex variable, turn out to be particularly elementary and transparent. The book is divided into three chapters. In the first chapter we consider Riemann surfaces as covering spaces and develop a few basics from topology which are needed for this. Then we construct the Riemann surfaces which arise via analytic continuation of function germs. In particular this includes the Riemann surfaces of algebraic functions. As well we look more closely at analytic functions which display a special multi-valued behavior. Examples of this are the primitives of holomorphic i-forms and the solutions of linear differential equations. The second chapter is devoted to compact Riemann surfaces. The main classical results, like the Riemann-Roch Theorem, Abel's Theorem and the Jacobi inversion problem, are presented. Sheaf cohomology is an important technical tool. But only the first cohomology groups are used and these are comparatively easy to handle. The main theorems are all derived, following Serre, from the finite dimensionality of the first cohomology group with coefficients in the sheaf of holomorphic functions. And the proof of this is based on the fact that one can locally solve inhomogeneous Cauchy Riemann equations and on Schwarz' Lemma.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Zubal-Books, Since 1961, Cleveland, OH, USA
Zustand: Fine. *Price HAS BEEN REDUCED by 10% until Monday, Jan. 19 (sale item)* 3rd printing, viii, 256 pp., hardcover, spine lightly faded else fine. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Artikel-Nr. ZB1338162
Anzahl: 1 verfügbar
Anbieter: Better World Books Ltd, Dunfermline, Vereinigtes Königreich
Zustand: Good. Ships from the UK. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages. Artikel-Nr. 17380004-6
Anzahl: 1 verfügbar
Anbieter: Wonder Book, Frederick, MD, USA
Zustand: Very Good. Very Good condition. A copy that may have a few cosmetic defects. May also contain light spine creasing or a few markings such as an owner's name, short gifter's inscription or light stamp. Artikel-Nr. U04K-01246
Anzahl: 1 verfügbar
Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich
Zustand: Fair. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In fair condition, suitable as a study copy. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,600grams, ISBN:9780387906171. Artikel-Nr. 4130755
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 268 6 Illus. Artikel-Nr. 7592172
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -This book grew out of lectures on Riemann surfaces which the author gave at the universities of Munich, Regensburg and Munster. Its aim is to give an introduction to this rich and beautiful subject, while presenting methods from the theory of complex manifolds which, in the special case of one complex variable, turn out to be particularly elementary and transparent. The book is divided into three chapters. In the first chapter we consider Riemann surfaces as covering spaces and develop a few basics from topology which are needed for this. Then we construct the Riemann surfaces which arise via analytic continuation of function germs. In particular this includes the Riemann surfaces of algebraic functions. As well we look more closely at analytic functions which display a special multi-valued behavior. Examples of this are the primitives of holomorphic i-forms and the solutions of linear differential equations. The second chapter is devoted to compact Riemann surfaces. The main classical results, like the Riemann-Roch Theorem, Abel's Theorem and the Jacobi inversion problem, are presented. Sheaf cohomology is an important technical tool. But only the first cohomology groups are used and these are comparatively easy to handle. The main theorems are all derived, following Serre, from the finite dimensionality of the first cohomology group with coefficients in the sheaf of holomorphic functions. And the proof of this is based on the fact that one can locally solve inhomogeneous Cauchy Riemann equations and on Schwarz' Lemma.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 268 pp. Englisch. Artikel-Nr. 9780387906171
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book grew out of lectures on Riemann surfaces which the author gave at the universities of Munich, Regensburg and Munster. Its aim is to give an introduction to this rich and beautiful subject, while presenting methods from the theory of complex manifolds which, in the special case of one complex variable, turn out to be particularly elementary and transparent. The book is divided into three chapters. In the first chapter we consider Riemann surfaces as covering spaces and develop a few basics from topology which are needed for this. Then we construct the Riemann surfaces which arise via analytic continuation of function germs. In particular this includes the Riemann surfaces of algebraic functions. As well we look more closely at analytic functions which display a special multi-valued behavior. Examples of this are the primitives of holomorphic i-forms and the solutions of linear differential equations. The second chapter is devoted to compact Riemann surfaces. The main classical results, like the Riemann-Roch Theorem, Abel's Theorem and the Jacobi inversion problem, are presented. Sheaf cohomology is an important technical tool. But only the first cohomology groups are used and these are comparatively easy to handle. The main theorems are all derived, following Serre, from the finite dimensionality of the first cohomology group with coefficients in the sheaf of holomorphic functions. And the proof of this is based on the fact that one can locally solve inhomogeneous Cauchy Riemann equations and on Schwarz' Lemma. Artikel-Nr. 9780387906171
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 254 pages. 9.75x6.50x0.75 inches. In Stock. Artikel-Nr. x-0387906177
Anzahl: 2 verfügbar