Verwandte Artikel zu Stochastic Monotonicity and Queueing Applications of...

Stochastic Monotonicity and Queueing Applications of Birth-Death Processes (Lecture Notes in Statistics): 4 - Softcover

 
9780387905471: Stochastic Monotonicity and Queueing Applications of Birth-Death Processes (Lecture Notes in Statistics): 4

Inhaltsangabe

A stochastic process {X(t): 0 S t < =} with discrete state space S c ~ is said to be stochastically increasing (decreasing) on an interval T if the probabilities Pr{X(t) > i}, i E S, are increasing (decreasing) with t on T. Stochastic monotonicity is a basic structural property for process behaviour. It gives rise to meaningful bounds for various quantities such as the moments of the process, and provides the mathematical groundwork for approximation algorithms. Obviously, stochastic monotonicity becomes a more tractable subject for analysis if the processes under consideration are such that stochastic mono tonicity on an inter­ val 0 < t < E implies stochastic monotonicity on the entire time axis. DALEY (1968) was the first to discuss a similar property in the context of discrete time Markov chains. Unfortunately, he called this property "stochastic monotonicity", it is more appropriate, however, to speak of processes with monotone transition operators. KEILSON and KESTER (1977) have demonstrated the prevalence of this phenomenon in discrete and continuous time Markov processes. They (and others) have also given a necessary and sufficient condition for a (temporally homogeneous) Markov process to have monotone transition operators. Whether or not such processes will be stochas­ tically monotone as defined above, now depends on the initial state distribution. Conditions on this distribution for stochastic mono tonicity on the entire time axis to prevail were given too by KEILSON and KESTER (1977).

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

A stochastic process {X(t): 0 S t < =} with discrete state space S c ~ is said to be stochastically increasing (decreasing) on an interval T if the probabilities Pr{X(t) > i}, i E S, are increasing (decreasing) with t on T. Stochastic monotonicity is a basic structural property for process behaviour. It gives rise to meaningful bounds for various quantities such as the moments of the process, and provides the mathematical groundwork for approximation algorithms. Obviously, stochastic monotonicity becomes a more tractable subject for analysis if the processes under consideration are such that stochastic mono tonicity on an inter­ val 0 < t < E implies stochastic monotonicity on the entire time axis. DALEY (1968) was the first to discuss a similar property in the context of discrete time Markov chains. Unfortunately, he called this property "stochastic monotonicity", it is more appropriate, however, to speak of processes with monotone transition operators. KEILSON and KESTER (1977) have demonstrated the prevalence of this phenomenon in discrete and continuous time Markov processes. They (and others) have also given a necessary and sufficient condition for a (temporally homogeneous) Markov process to have monotone transition operators. Whether or not such processes will be stochas­ tically monotone as defined above, now depends on the initial state distribution. Conditions on this distribution for stochastic mono tonicity on the entire time axis to prevail were given too by KEILSON and KESTER (1977).

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum1981
  • ISBN 10 0387905472
  • ISBN 13 9780387905471
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten128
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Gut
128 Seiten ex Library Book Sprache...
Diesen Artikel anzeigen

EUR 4,00 für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781461258841: Stochastic Monotonicity and Queueing Applications of Birth-Death Processes

Vorgestellte Ausgabe

ISBN 10:  1461258847 ISBN 13:  9781461258841
Verlag: Springer, 2012
Softcover

Suchergebnisse für Stochastic Monotonicity and Queueing Applications of...

Foto des Verkäufers

Doorn, Erik van
Verlag: Springer 12.03.1981., 1981
ISBN 10: 0387905472 ISBN 13: 9780387905471
Gebraucht Softcover

Anbieter: NEPO UG, Rüsselsheim am Main, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Gut. 128 Seiten ex Library Book Sprache: Englisch Gewicht in Gramm: 198 23,5 x 15,5 x 0,7 cm, Taschenbuch Auflage: Softcover reprint of the original 1st ed. 1981. Artikel-Nr. 355075

Verkäufer kontaktieren

Gebraucht kaufen

EUR 40,43
Währung umrechnen
Versand: EUR 4,00
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Erik Van Doorn
Verlag: Springer New York, 1981
ISBN 10: 0387905472 ISBN 13: 9780387905471
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - A stochastic process {X(t): 0 S t i}, i E S, are increasing (decreasing) with t on T. Stochastic monotonicity is a basic structural property for process behaviour. It gives rise to meaningful bounds for various quantities such as the moments of the process, and provides the mathematical groundwork for approximation algorithms. Obviously, stochastic monotonicity becomes a more tractable subject for analysis if the processes under consideration are such that stochastic mono tonicity on an inter val 0 t E implies stochastic monotonicity on the entire time axis. DALEY (1968) was the first to discuss a similar property in the context of discrete time Markov chains. Unfortunately, he called this property 'stochastic monotonicity', it is more appropriate, however, to speak of processes with monotone transition operators. KEILSON and KESTER (1977) have demonstrated the prevalence of this phenomenon in discrete and continuous time Markov processes. They (and others) have also given a necessary and sufficient condition for a (temporally homogeneous) Markov process to have monotone transition operators. Whether or not such processes will be stochas tically monotone as defined above, now depends on the initial state distribution. Conditions on this distribution for stochastic mono tonicity on the entire time axis to prevail were given too by KEILSON and KESTER (1977). Artikel-Nr. 9780387905471

Verkäufer kontaktieren

Neu kaufen

EUR 58,39
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Doorn, Erik Van
Verlag: Springer, 1981
ISBN 10: 0387905472 ISBN 13: 9780387905471
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780387905471_new

Verkäufer kontaktieren

Neu kaufen

EUR 59,56
Währung umrechnen
Versand: EUR 5,81
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Doorn, Erik Van
Verlag: Springer Verlag, 1982
ISBN 10: 0387905472 ISBN 13: 9780387905471
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 124 pages. 9.13x5.91x0.32 inches. In Stock. Artikel-Nr. x-0387905472

Verkäufer kontaktieren

Neu kaufen

EUR 76,66
Währung umrechnen
Versand: EUR 11,68
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb