Historically, for metric spaces the quest for universal spaces in dimension theory spanned approximately a century of mathematical research. The history breaks naturally into two periods - the classical (separable metric) and the modern (not-necessarily separable metric).
The classical theory is now well documented in several books. This monograph is the first book to unify the modern theory from 1960-2007. Like the classical theory, the modern theory fundamentally involves the unit interval.
Unique features include:
* The use of graphics to illustrate the fractal view of these spaces;
* Lucid coverage of a range of topics including point-set topology and mapping theory, fractal geometry, and algebraic topology;
* A final chapter contains surveys and provides historical context for related research that includes other imbedding theorems, graph theory, and closed imbeddings;
* Each chapter contains a comment section that provides historical context with references that serve as a bridge to the literature.
This monograph will be useful to topologists, to mathematicians working in fractal geometry, and to historians of mathematics. Being the first monograph to focus on the connection between generalized fractals and universal spaces in dimension theory, it will be a natural text for graduate seminars or self-study - the interested reader will find many relevant open problems which will create further research into these topics.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
For metric spaces the quest for universal spaces in dimension theory spanned approximately a century of mathematical research. The history breaks naturally into two periods -- the classical (separable metric) and the modern (not necessarily separable metric). While the classical theory is now well documented in several books, this is the first book to unify the modern theory (1960 - 2007). Like the classical theory, the modern theory fundamentally involves the unit interval.
By the 1970s, the author of this monograph generalized Cantor's 1883 construction (identify adjacent-endpoints in Cantor's set) of the unit interval, obtaining -- for any given weight -- a one-dimensional metric space that contains rationals and irrationals as counterparts to those in the unit interval.
Following the development of fractal geometry during the 1980s, these new spaces turned out to be the first examples of attractors of infinite iterated function systems -- "generalized fractals." The use of graphics to illustrate the fractal view of these spaces is a unique feature of this monograph. In addition, this book provides historical context for related research that includes imbedding theorems, graph theory, and closed imbeddings.
This monograph will be useful to topologists, to mathematicians working in fractal geometry, and to historians of mathematics. It can also serve as a text for graduate seminars or self-study -- the interested reader will find many relevant open problems that will motivate further research into these topics.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,00 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland
91 Ills., 10 Tabs., XVII, 241 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Springer Monographs in Mathematics. Sprache: Englisch. Artikel-Nr. 28236AB
Anzahl: 8 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Artikel-Nr. ABNR-75762
Anzahl: 5 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 272. Artikel-Nr. 7409391
Anzahl: 4 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Artikel-Nr. ABNR-85811
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -Historically, for metric spaces the quest for universal spaces in dimension theory spanned approximately a century of mathematical research. The history breaks naturally into two periods - the classical (separable metric) and the modern (not-necessarily separable metric).The classical theory is now well documented in several books. This monograph is the first book to unify the modern theory from 1960-2007. Like the classical theory, the modern theory fundamentally involves the unit interval.Unique features include:\* The use of graphics to illustrate the fractal view of these spaces;\* Lucid coverage of a range of topics including point-set topology and mapping theory, fractal geometry, and algebraic topology;\* A final chapter contains surveys and provides historical context for related research that includes other imbedding theorems, graph theory, and closed imbeddings;\* Each chapter contains a comment section that provides historical context with references that serve as a bridge to the literature.This monograph will be useful to topologists, to mathematicians working in fractal geometry, and to historians of mathematics. Being the first monograph to focus on the connection between generalized fractals and universal spaces in dimension theory, it will be a natural text for graduate seminars or self-study - the interested reader will find many relevant open problems which will create further research into these topics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 272 pp. Englisch. Artikel-Nr. 9780387854939
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Historically, for metric spaces the quest for universal spaces in dimension theory spanned approximately a century of mathematical research. The history breaks naturally into two periods - the classical (separable metric) and the modern (not-necessarily separable metric).The classical theory is now well documented in several books. This monograph is the first book to unify the modern theory from 1960-2007. Like the classical theory, the modern theory fundamentally involves the unit interval.Unique features include:\* The use of graphics to illustrate the fractal view of these spaces;\* Lucid coverage of a range of topics including point-set topology and mapping theory, fractal geometry, and algebraic topology;\* A final chapter contains surveys and provides historical context for related research that includes other imbedding theorems, graph theory, and closed imbeddings;\* Each chapter contains a comment section that provides historical context with references that serve as a bridge to the literature.This monograph will be useful to topologists, to mathematicians working in fractal geometry, and to historians of mathematics. Being the first monograph to focus on the connection between generalized fractals and universal spaces in dimension theory, it will be a natural text for graduate seminars or self-study - the interested reader will find many relevant open problems which will create further research into these topics. Artikel-Nr. 9780387854939
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780387854939_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 1st edition. 242 pages. 9.75x6.75x1.00 inches. In Stock. Artikel-Nr. x-0387854932
Anzahl: 2 verfügbar