Verwandte Artikel zu Weak Dependence: With Examples and Applications (Lecture...

Weak Dependence: With Examples and Applications (Lecture Notes in Statistics): 190 - Softcover

 
9780387699516: Weak Dependence: With Examples and Applications (Lecture Notes in Statistics): 190

Inhaltsangabe

This book develops Doukhan/Louhichi's 1999 idea to measure asymptotic independence of a random process. The authors, who helped develop this theory, propose examples of models fitting such conditions: stable Markov chains, dynamical systems or more complicated models, nonlinear, non-Markovian, and heteroskedastic models with infinite memory. Applications are still needed to develop a method of analysis for nonlinear times series, and this book provides a strong basis for additional studies.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Von der hinteren Coverseite

This monograph is aimed at developing Doukhan/Louhichi's (1999) idea to measure asymptotic independence of a random process. The authors propose various examples of models fitting such conditions such as stable Markov chains, dynamical systems or more complicated models, nonlinear, non-Markovian, and heteroskedastic models with infinite memory. Most of the commonly used stationary models fit their conditions. The simplicity of the conditions is also their strength.
 
The main existing tools for an asymptotic theory are developed under weak dependence. They apply the theory to nonparametric statistics, spectral analysis, econometrics, and resampling. The level of generality makes those techniques quite robust with respect to the model. The limit theorems are sometimes sharp and always simple to apply.
 
The theory (with proofs) is developed and the authors propose to fix the notation for future applications. A large number of research papers deals with the present ideas; the authors as well as numerous other investigators participated actively in the development of this theory. Several applications are still needed to develop a method of analysis for (nonlinear) times series and they provide here a strong basis for such studies.
 
Jérôme Dedecker (associate professor Paris 6), Gabriel Lang (professor at
Ecole Polytechnique, ENGREF Paris), Sana Louhichi (Paris 11, associate professor at Paris 2), and Clémentine Prieur (associate professor at INSA, Toulouse) are 
main contributors for the development of weak dependence. José Rafael León (Polar price, correspondent of the Bernoulli society for Latino-America) is professor at University Central of Venezuela and Paul Doukhan  is professor at ENSAE (SAMOS-CES Paris 1 and Cergy Pontoise) and associate editor of Stochastic Processes and their Applications. His Mixing: Properties and Examples (Springer, 1994) is a main reference for the concurrent notion of mixing.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 13,86 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Suchergebnisse für Weak Dependence: With Examples and Applications (Lecture...

Beispielbild für diese ISBN

Dedecker, Jérome; Doukhan, Paul; Lang, Gabriel; Leon, José Rafael; Louhichi, Sana; Prieur, Clémentine
Verlag: Springer, 2007
ISBN 10: 0387699511 ISBN 13: 9780387699516
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780387699516_new

Verkäufer kontaktieren

Neu kaufen

EUR 128,72
Währung umrechnen
Versand: EUR 13,86
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Jérome Dedecker
ISBN 10: 0387699511 ISBN 13: 9780387699516
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Time series and random elds are main topics in modern statistical techniques. They are essential for applications where randomness plays an important role. Indeed, physical constraints mean that serious modelling cannot be done - ing only independent sequences. This is a real problem because asymptotic properties are not always known in this case. Thepresentworkisdevotedtoprovidingaframeworkforthecommonlyuse d time series. In order to validate the main statistics, one needs rigorous limit theorems. In the eld of probability theory, asymptotic behavior of sums may or may not be analogous to those of independent sequences. We are involved with this rst case in this book. Very sharp results have been proved for mixing processes, a notion int- duced by Murray Rosenblatt [166]. Extensive discussions of this topic may be found in his Dependence in Probability and Statistics (a monograph published by Birkhau ¿ser in 1986) and in Doukhan (1994) [61], and the sharpest results may be found in Rio (2000)[161]. However, a counterexample of a really simple non-mixing process was exhibited by Andrews (1984) [2]. The notion of weak dependence discussed here takes real account of the available models, which are discussed extensively. Our idea is that robustness of the limit theorems with respect to the model should be taken into account. In real applications, nobody may assert, for example, the existence of a density for the inputs in a certain model, while such assumptions are always needed when dealing with mixing concepts.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 336 pp. Englisch. Artikel-Nr. 9780387699516

Verkäufer kontaktieren

Neu kaufen

EUR 128,39
Währung umrechnen
Versand: EUR 60,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Jérome Dedecker
ISBN 10: 0387699511 ISBN 13: 9780387699516
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Time series and random elds are main topics in modern statistical techniques. They are essential for applications where randomness plays an important role. Indeed, physical constraints mean that serious modelling cannot be done - ing only independent sequences. This is a real problem because asymptotic properties are not always known in this case. Thepresentworkisdevotedtoprovidingaframeworkforthecommonlyused time series. In order to validate the main statistics, one needs rigorous limit theorems. In the eld of probability theory, asymptotic behavior of sums may or may not be analogous to those of independent sequences. We are involved with this rst case in this book. Very sharp results have been proved for mixing processes, a notion int- duced by Murray Rosenblatt [166]. Extensive discussions of this topic may be found in his Dependence in Probability and Statistics (a monograph published by Birkhau ser in 1986) and in Doukhan (1994) [61], and the sharpest results may be found in Rio (2000)[161]. However, a counterexample of a really simple non-mixing process was exhibited by Andrews (1984) [2]. The notion of weak dependence discussed here takes real account of the available models, which are discussed extensively. Our idea is that robustness of the limit theorems with respect to the model should be taken into account. In real applications, nobody may assert, for example, the existence of a density for the inputs in a certain model, while such assumptions are always needed when dealing with mixing concepts. Artikel-Nr. 9780387699516

Verkäufer kontaktieren

Neu kaufen

EUR 132,72
Währung umrechnen
Versand: EUR 62,56
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Dedecker, Jerome/ Doukhan, Paul/ Lang, Gabriel/ Leon, Jose Rafael/ Louhichi, Sana
Verlag: Springer Verlag, 2007
ISBN 10: 0387699511 ISBN 13: 9780387699516
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 1st edition. 322 pages. 9.25x6.00x0.75 inches. In Stock. Artikel-Nr. x-0387699511

Verkäufer kontaktieren

Neu kaufen

EUR 178,27
Währung umrechnen
Versand: EUR 28,92
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb