Verwandte Artikel zu Maximum Penalized Likelihood Estimation: Volume II:...

Maximum Penalized Likelihood Estimation: Volume II: Regression (Springer Series in Statistics) - Hardcover

 
9780387402673: Maximum Penalized Likelihood Estimation: Volume II: Regression (Springer Series in Statistics)

Inhaltsangabe

Unique blend of asymptotic theory and small sample practice through simulation experiments and data analysis.

Novel reproducing kernel Hilbert space methods for the analysis of smoothing splines and local polynomials. Leading to uniform error bounds and honest confidence bands for the mean function using smoothing splines

Exhaustive exposition of algorithms, including the Kalman filter, for the computation of smoothing splines of arbitrary order.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Von der hinteren Coverseite

This is the second volume of a text on the theory and practice of maximum penalized likelihood estimation. It is intended for graduate students in statistics, operations research and applied mathematics, as well as for researchers and practitioners in the field. The present volume deals with nonparametric regression.

The emphasis in this volume is on smoothing splines of arbitrary order, but other estimators (kernels, local and global polynomials) pass review as well. Smoothing splines and local polynomials are studied in the context of reproducing kernel Hilbert spaces. The connection between smoothing splines and reproducing kernels is of course well-known. The new twist is that letting the innerproduct depend on the smoothing parameter opens up new possibilities. It leads to asymptotically equivalent reproducing kernel estimators (without qualifications), and thence, via uniform error bounds for kernel estimators, to uniform error bounds for smoothing splines and via strong approximations, to confidence bands for the unknown regression function.

The reason for studying smoothing splines of arbitrary order is that one wants to use them for data analysis. Regarding the actual computation, the usual scheme based on spline interpolation is useful for cubic smoothing splines only. For splines of arbitrary order, the Kalman filter is the most important method, the intricacies of which are explained in full. The authors also discuss simulation results for smoothing splines and local and global polynomials for a variety of test problems as well as results on confidence bands for the unknown regression function based on undersmoothed quintic smoothing splines with remarkably good coverage probabilities.

P.P.B. Eggermont and V.N. LaRiccia are with the Statistics Program of the Department of Food and Resource Economics in the College of Agriculture and Natural Resources at the University of Delaware, and the authors of Maximum Penalized Likelihood Estimation: Volume I: Density Estimation.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 5,76 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781461417125: Maximum Penalized Likelihood Estimation: Volume II: Regression: 2 (Springer Series in Statistics)

Vorgestellte Ausgabe

ISBN 10:  1461417120 ISBN 13:  9781461417125
Verlag: Springer, 2011
Softcover

Suchergebnisse für Maximum Penalized Likelihood Estimation: Volume II:...

Beispielbild für diese ISBN

Eggermont, Paul P.; LaRiccia, Vincent N.
Verlag: Springer, 2009
ISBN 10: 0387402675 ISBN 13: 9780387402673
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780387402673_new

Verkäufer kontaktieren

Neu kaufen

EUR 227,84
Währung umrechnen
Versand: EUR 5,76
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb