Verwandte Artikel zu Information and Complexity in Statistical Modeling...

Information and Complexity in Statistical Modeling (Information Science and Statistics) - Hardcover

 
9780387366104: Information and Complexity in Statistical Modeling (Information Science and Statistics)

Inhaltsangabe

No statistical model is "true" or "false," "right" or "wrong"; the models just have varying performance, which can be assessed. The main theme in this book is to teach modeling based on the principle that the objective is to extract the information from data that can be learned with suggested classes of probability models. The intuitive and fundamental concepts of complexity, learnable information, and noise are formalized, which provides a firm information theoretic foundation for statistical modeling. Although the prerequisites include only basic probability calculus and statistics, a moderate level of mathematical proficiency would be beneficial.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Von der hinteren Coverseite

No statistical model is "true" or "false," "right" or "wrong"; the models just have varying performance, which can be assessed. The main theme in this book is to teach modeling based on the principle that the objective is to extract the information from data that can be learned with suggested classes of probability models. The intuitive and fundamental concepts of complexity, learnable information, and noise are formalized, which provides a firm information theoretic foundation for statistical modeling. Inspired by Kolmogorov's structure function in the algorithmic theory of complexity, this is accomplished by finding the shortest code length, called the stochastic complexity, with which the data can be encoded when advantage is taken of the models in a suggested class, which amounts to the MDL (Minimum Description Length) principle. The complexity, in turn, breaks up into the shortest code length for the optimal model in a set of models that can be optimally distinguished from the given data and the rest, which defines "noise" as the incompressible part in the data without useful information.

Such a view of the modeling problem permits a unified treatment of any type of parameters, their number, and even their structure. Since only optimally distinguished models are worthy of testing, we get a logically sound and straightforward treatment of hypothesis testing, in which for the first time the confidence in the test result can be assessed. Although the prerequisites include only basic probability calculus and statistics, a moderate level of mathematical proficiency would be beneficial. The different and logically unassailable view of statistical modelling should provide excellent grounds for further research and suggest topics for graduate students in all fields of modern engineering, including and not restricted to signal and image processing, bioinformatics, pattern recognition, and machine learning to mention just a few.

The author is an Honorary Doctor and Professor Emeritus of the Technical University of Tampere, Finland, a Fellow of Helsinki Institute for Information Technology, and visiting Professor in the

Computer Learning Research Center of University of London, Holloway, England. He is also a Foreign Member of Finland's Academy of Science and Letters, an Associate Editor of IMA Journal of Mathematical Control and Information and of EURASIP Journal on Bioinformatics and Systems Biology. He is also a former Associate Editor of Source Coding of IEEE Transactions on Information Theory.

The author is the recipient of the IEEE Information Theory Society's 1993 Richard W. Hamming medal for fundamental contributions to information theory, statistical inference, control theory, and the theory of complexity; the Information Theory Society's Golden Jubilee Award in 1998 for Technological Innovation for inventing Arithmetic Coding; and the 2006 Kolmogorov medal by University of London. He has also received an IBM Corporate Award for the MDL and PMDL Principles in 1991, and two best paper awards.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Befriedigend
slightly bent boards, pages clean...
Diesen Artikel anzeigen

EUR 12,37 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

EUR 5,83 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781441922670: Information and Complexity in Statistical Modeling (Information Science and Statistics)

Vorgestellte Ausgabe

ISBN 10:  1441922679 ISBN 13:  9781441922670
Verlag: Springer, 2010
Softcover

Suchergebnisse für Information and Complexity in Statistical Modeling...

Beispielbild für diese ISBN

Rissanen, Jorma
Verlag: Springer, 2007
ISBN 10: 0387366105 ISBN 13: 9780387366104
Gebraucht Hardcover

Anbieter: Books From California, Simi Valley, CA, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

hardcover. Zustand: Good. slightly bent boards, pages clean. text bound upside-down from the cover. Artikel-Nr. mon0003615572

Verkäufer kontaktieren

Gebraucht kaufen

EUR 18,95
Währung umrechnen
Versand: EUR 12,37
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Rissanen, Jorma
Verlag: Springer, 2007
ISBN 10: 0387366105 ISBN 13: 9780387366104
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9780387366104_new

Verkäufer kontaktieren

Neu kaufen

EUR 61,27
Währung umrechnen
Versand: EUR 5,83
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Jorma Rissanen
Verlag: Springer New York, 2007
ISBN 10: 0387366105 ISBN 13: 9780387366104
Neu Hardcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Gebunden. Zustand: New. The author is a distinguished scientist in information theory and statistical modelingThis volume presents a different, yet logically unassailable, view of statistical modeling. It details a method of modeling based on the principle that t. Artikel-Nr. 458429470

Verkäufer kontaktieren

Neu kaufen

EUR 67,94
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Jorma Rissanen
ISBN 10: 0387366105 ISBN 13: 9780387366104
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware - No statistical model is 'true' or 'false,' 'right' or 'wrong'; the models just have varying performance, which can be assessed. The main theme in this book is to teach modeling based on the principle that the objective is to extract the information from data that can be learned with suggested classes of probability models. The intuitive and fundamental concepts of complexity, learnable information, and noise are formalized, which provides a firm information theoretic foundation for statistical modeling. Inspired by Kolmogorov's structure function in the algorithmic theory of complexity, this is accomplished by finding the shortest code length, called the stochastic complexity, with which the data can be encoded when advantage is taken of the models in a suggested class, which amounts to the MDL (Minimum Description Length) principle. The complexity, in turn, breaks up into the shortest code length for the optimal model in a set of models that can be optimally distinguished from the given data and the rest, which defines 'noise' as the incompressible part in the data without useful information.Such a view of the modeling problem permits a unified treatment of any type of parameters, their number, and even their structure. Since only optimally distinguished models are worthy of testing, we get a logically sound and straightforward treatment of hypothesis testing, in which for the first time the confidence in the test result can be assessed. Although the prerequisites include only basic probability calculus and statistics, a moderate level of mathematical proficiency would be beneficial. The different and logically unassailable view of statistical modelling should provide excellent grounds for further research and suggest topics for graduate students in all fields of modern engineering, including and not restricted to signal and image processing, bioinformatics, pattern recognition, and machine learning to mention just a few. Artikel-Nr. 9780387366104

Verkäufer kontaktieren

Neu kaufen

EUR 82,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb