Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory.
The book starts with a refresher of the Bayesian Inference concepts. The second chapter introduces modern methods for Exploratory Analysis of Bayesian Models. With an understanding of these two fundamentals the subsequent chapters talk through various models including linear regressions, splines, time series, Bayesian additive regression trees. The final chapters include Approximate Bayesian Computation, end to end case studies showing how to apply Bayesian modelling in different settings, and a chapter about the internals of probabilistic programming languages. Finally the last chapter serves as a reference for the rest of the book by getting closer into mathematical aspects or by extending the discussion of certain topics.
This book is written by contributors of PyMC3, ArviZ, Bambi, and Tensorflow Probability among other libraries.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Osvaldo A. Martin is a Researcher at IMASL-CONICET in Argentina and the Department of Computer Science from Aalto University in Finland. He has a PhD in biophysics and structural bioinformatics. Over the years he has become increasingly interested in data analysis problems with a Bayesian flavor. He is especially motivated by the development and implementation of software tools for Bayesian statistics and probabilistic modeling.
Ravin Kumar is a Data Scientist at Google and previously worked at SpaceX and sweetgreen among other companies. He has an M.S in Manufacturing Engineering and a B.S in Mechanical Engineering. He found Bayesian statistics to be an excellent tool for modeling organizations and informing strategy. This interest in flexible statistical modeling led to a warm welcoming open source community which he is honored to be a member of now.
Junpeng Lao is a Data Scientist at Google. Prior to that he did his PhD and subsequently worked as a postdoc in Cognitive Neuroscience. He developed a fondness for Bayesian Statistics and generative modeling after working primarily with Bootstrapping and Permutation during his academic life.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 5,74 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerEUR 5,73 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Better World Books Ltd, Dunfermline, Vereinigtes Königreich
Zustand: Good. Ships from the UK. Used book that is in clean, average condition without any missing pages. Artikel-Nr. 52604497-20
Anzahl: 1 verfügbar
Anbieter: Books From California, Simi Valley, CA, USA
Hardcover. Zustand: Fine. Artikel-Nr. mon0002914410
Anzahl: 3 verfügbar
Anbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Artikel-Nr. NW9780367894368
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. GB-9780367894368
Anzahl: 1 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. GB-9780367894368
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780367894368_new
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Osvaldo A. Martin is a Researcher at IMASL-CONICET in Argentina and the Department of Computer Science from Aalto University in Finland. He has a PhD in biophysics and structural bioinformatics. Over the years he has become increasingly interested. Artikel-Nr. 508226341
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory. Artikel-Nr. 9780367894368
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 398. Artikel-Nr. 390376586
Anzahl: 3 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2021. 1st Edition. Hardcover. . . . . . Books ship from the US and Ireland. Artikel-Nr. V9780367894368
Anzahl: 1 verfügbar