Computational approaches to music composition and style imitation have engaged musicians, music scholars, and computer scientists since the early days of computing. Music generation research has generally employed one of two strategies: knowledge-based methods that model style through explicitly formalized rules, and data mining methods that apply machine learning to induce statistical models of musical style. The five chapters in this book illustrate the range of tasks and design choices in current music generation research applying machine learning techniques and highlighting recurring research issues such as training data, music representation, candidate generation, and evaluation. The contributions focus on different aspects of modeling and generating music, including melody, chord sequences, ornamentation, and dynamics. Models are induced from audio data or symbolic data. This book was originally published as a special issue of the Journal of Mathematics and Music.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
José M. Iñesta is a Professor in the Department of Software and Computing Systems at the Universidad de Alicante, Spain.
Darrell Conklin
is a Professor in the Department of Computer Science and Artificial Intelligence at the University of the Basque Country.
Rafael Ramírez-Melendez
is Associate Professor in the Music Technology Group in the Department of Information and Communication Technologies at the Universidad Pompeu Fabra, Barcelona, Spain.
Thomas M. Fiore
is Associate Professor of Mathematics at the University of Michigan-Dearborn, MI, USA.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 122. Artikel-Nr. 381685060
Anzahl: 3 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 122 pages. 9.68x6.85x0.28 inches. In Stock. Artikel-Nr. zk0367892855
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Artikel-Nr. 594606914
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - This book illustrates the range of tasks and design choices in current music generation research, applying machine learning techniques and highlighting recurring research issues such as training data, music representation, candidate generation, and evaluation. This book was first published as a special issue of the Journal of Mathematics and. Artikel-Nr. 9780367892852
Anzahl: 2 verfügbar