Supervised Machine Learning: Optimization Framework and Applications with SAS and R - Softcover

Kolosova, Tanya; Berestizhevsky, Samuel

 
9780367538828: Supervised Machine Learning: Optimization Framework and Applications with SAS and R

Inhaltsangabe

AI framework intended to solve a problem of bias-variance tradeoff for supervised learning methods in real-life applications. It comprises of bootstrapping to create multiple training and testing data sets, design and analysis of statistical experiments and optimal hyper-parameters for ML methods.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Tanya Kolosova is a statistician, software engineer, an educator, and a co-author of two books on statistical analysis and metadata-based applications development using SAS. Tanya is an actionable analytics expert, she has extensive knowledge of software development methods and technologies, artificial intelligence methods and algorithms, and statistically designed experiments.

Samuel Berestizhevsky is a statistician, researcher and software engineer. Together with Tanya, Samuel co-authored two books on statistical analysis and metadata-based applications development using SAS. Samuel is an innovator and an expert in the area of automated actionable analytics and artificial intelligence solutions. His extensive knowledge of software development methods, technologies and algorithms allows him to develop solutions on the cutting edge of science.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Weitere beliebte Ausgaben desselben Titels

9780367277321: Supervised Machine Learning: Optimization Framework and Applications with SAS and R

Vorgestellte Ausgabe

ISBN 10:  0367277328 ISBN 13:  9780367277321
Verlag: Chapman and Hall/CRC, 2020
Hardcover