This book presents solutions to missing data problems through explicit or noniterative sampling calculation of Bayesian posteriors, based on the inverse Bayes formulae. The authors focus on exact numerical solutions, a conditional sampling approach via data augmentation, and a noniterative sampling approach via EM-type algorithms. They describe Monte Carlo simulation, numerical techniques, and optimization methods. The book illustrates the methods with biostatistical models and real-world applications, including mixed effects and hierarchical models, nonresponse and contingency tables, and the constrained parameter problem reformulated as a missing data problem.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Ming T. Tan is Professor of Biostatistics in the Department of Epidemiology and Preventive Medicine at the University of Maryland School of Medicine and Director of the Division of Biostatistics at the University of Maryland Greenebaum Cancer Center.
Guo-Liang Tian is Associate Professor in the Department of Statistics and Actuarial Science at the University of Hong Kong.
Kai Wang Ng is Professor and Head of the Department of Statistics and Actuarial Science at the University of Hong Kong.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Artikel-Nr. 390433909
Anzahl: 3 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. reprint edition. 328 pages. 9.00x5.00x0.75 inches. In Stock. Artikel-Nr. x-0367385309
Anzahl: 2 verfügbar