This book is devoted to a detailed development of the divergence theorem. The framework is that of Lebesgue integration ― no generalized Riemann integrals of Henstock–Kurzweil variety are involved.
In Part I the divergence theorem is established by a combinatorial argument involving dyadic cubes. Only elementary properties of the Lebesgue integral and Hausdorff measures are used. The resulting integration by parts is sufficiently general for many applications. As an example, it is applied to removable singularities of Cauchy–Riemann, Laplace, and minimal surface equations.
The sets of finite perimeter are introduced in Part II. Both the geometric and analytic points of view are presented. The equivalence of these viewpoints is obtained via the functions of bounded variation. These functions are studied in a self-contained manner with no references to Sobolev’s spaces. The coarea theorem provides a link between the sets of finite perimeter and functions of bounded variation.
The general divergence theorem for bounded vector fields is proved in Part III. The proof consists of adapting the combinatorial argument of Part I to sets of finite perimeter. The unbounded vector fields and mean divergence are also discussed. The final chapter contains a characterization of the distributions that are equal to the flux of a continuous vector field.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Pfeffer, Washek F.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Artikel-Nr. 594577797
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - This book presents a detailed development of the divergence theorem. The framework is that of Lebesgue integration-no generalized Riemann integrals of Henstock-Kurzweil variety are involved. The first part of the book establishes the divergence theorem by a combinatorial argument involving dyadic cubes. Only elementary properties of the Lebesgue integral and Hausdorff measures are used. The second part introduces the sets of finite perimeter and the last part proves the general divergence theorem for bounded vector fields. Artikel-Nr. 9780367381516
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780367381516_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 259 pages. 9.21x6.14x0.59 inches. In Stock. Artikel-Nr. x-0367381516
Anzahl: 2 verfügbar