Transportation issues are often too complicated to be addressed by conventional parametric methods. Increasing data availability and recent advancements in machine learning provide new methods to tackle the challenging transportation problems. Readers will learn how to develop and apply different types of machine learning models to transportation related problems. Example applications include transportation data generations, traffic sensing, transportation mode recognition, transportation system management and control, traffic flow prediction, and traffic safety analysis.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Yinhai Wang - Ph.D., P.E., Professor, Transportation Engineering, University of Washington, USA. Dr. Yinhai Wang is a fellow of both the IEEE and American Society of Civil Engineers (ASCE). He also serves as director for Pacific Northwest Transportation Consortium (PacTrans), USDOT University Transportation Center for Federal Region 10, and the Northwestern Tribal Technical Assistance Program (NW TTAP) Center. He earned his Ph.D. in transportation engineering from the University of Tokyo (1998) and a Master in Computer
Science from the UW (2002). Dr. Wang’s research interests include traffic sensing, transportation data science, artificial intelligence methods and applications, edge computing, traffic operations and simulation, smart urban mobility, transportation safety, among others.
Zhiyong Cui - Ph.D., Associate Professor, School of Transportation Science and Engineering, Beihang University. Dr. Cui received the B.E. degree in software engineering from Beijing University in 2012, the M.S. degree in software engineering from Peking University in 2015, and the Ph.D. degree in civil engineering (transportation engineering) from the University of Washington in 2021. Dr. Cui’s primary research focuses on intelligent transportation systems, artificial intelligence, urban computing, and connected and autonomous vehicles.
Ruimin Ke - Ph.D., Assistant Professor, Department of Civil Engineering, University of Texas at El Paso, USA. Dr. Ruimin Ke received the B.E. degree in automation from Tsinghua University in 2014, the M.S. and Ph.D. degrees in civil engineering (transportation) from the University of Washington in 2016 and 2020, respectively, and the M.S. degree in computer science from the University of Illinois Urbana–Champaign.Dr. Ke’s research interests include intelligent transportation systems, autonomous driving, machine
learning, computer vision, and edge computing.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 10,19 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Artikel-Nr. 401657584
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 275 pages. 9.00x6.00x0.53 inches. In Stock. Artikel-Nr. __0323961266
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780323961264_new
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Über den AutorYinhai Wang - Ph.D., P.E., Professor, Transportation Engineering, University of Washington, USA. Dr. Yinhai Wang is a fellow of both the IEEE and American Society of Civil Engineers (ASCE). He also serves as director f. Artikel-Nr. 812988085
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - 'Transportation is a combination of systems that presents a variety of challenges often too intricate to be addressed by conventional parametric methods. Increasing data availability and recent advancements in machine learning provide new methods to tackle challenging transportation problems. This textbook is designed for college or graduate-level students in transportation or closely related fields to study and understand fundamentals in machine learning. Readers will learn how to develop and apply various types of machine learning models to transportation-related problems. Example applications include traffic sensing, data-quality control, traffic prediction, transportation asset management, traffic-system control and operations, and traffic-safety analysis.'--. Artikel-Nr. 9780323961264
Anzahl: 2 verfügbar