Deals with the most basic notion of linear algebra, to bring emphasis on approaches to the topic serving at the elementary level and more broadly.
A typical feature is where computational algorithms and theoretical proofs are brought together. Another is respect for symmetry, so that when this has some part in the form of a matter it should also be reflected in the treatment. Issues relating to computational method are covered. These interests may have suggested a limited account, to be rounded-out suitably. However this limitation where basic material is separated from further reaches of the subject has an appeal of its own.
To the `elementary operations' method of the textbooks for doing linear algebra, Albert Tucker added a method with his `pivot operation'. Here there is a more primitive method based on the `linear dependence table', and yet another based on `rank reduction'. The determinant is introduced in a completely unusual upside-down fashion where Cramer's rule comes first. Also dealt with is what is believed to be a completely new idea, of the `alternant', a function associated with the affine space the way the determinant is with the linear space, with n+1 vector arguments, as the determinant has n. Then for affine (or barycentric) coordinates we find a rule which is an unprecedented exact counterpart of Cramer's rule for linear coordinates, where the alternant takes on the role of the determinant. These are among the more distinct or spectacular items for possible novelty, or unfamiliarity. Others, with or without some remark, may be found scattered in different places.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Deals with the most basic notion of linear algebra, to bring emphasis on approaches to the topic serving at the elementary level and more broadly.
A typical feature is where computational algorithms and theoretical proofs are brought together. Another is respect for symmetry, so that when this has some part in the form of a matter it should also be reflected in the treatment. Issues relating to computational method are covered. These interests may have suggested a limited account, to be rounded-out suitably. However this limitation where basic material is separated from further reaches of the subject has an appeal of its own.
To the `elementary operations' method of the textbooks for doing linear algebra, Albert Tucker added a method with his `pivot operation'. Here there is a more primitive method based on the `linear dependence table', and yet another based on `rank reduction'. The determinant is introduced in a completely unusual upside-down fashion where Cramer's rule comes first. Also dealt with is what is believed to be a completely new idea, of the `alternant', a function associated with the affine space the way the determinant is with the linear space, with n+1 vector arguments, as the determinant has n. Then for affine (or barycentric) coordinates we find a rule which is an unprecedented exact counterpart of Cramer's rule for linear coordinates, where the alternant takes on the role of the determinant. These are among the more distinct or spectacular items for possible novelty, or unfamiliarity. Others, with or without some remark, may be found scattered in different places.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 7,47 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: BooksRun, Philadelphia, PA, USA
Hardcover. Zustand: Good. 2000. It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience. Artikel-Nr. 0306464284-11-1
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 196 Illus. Artikel-Nr. 8367538
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780306464287_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. This text deals with linear algebra, bringing emphasis on approaches to the topic at a general elementary level. A typical feature is where computational algorithms and theoretical proofs are brought together. Also discussed is what may well be a new idea, the "alternant". Num Pages: 175 pages, biography. BIC Classification: PBF; PBH. Category: (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate; (XV) Technical / Manuals. Dimension: 229 x 152 x 14. Weight in Grams: 1020. . 2000. Hardback. . . . . Books ship from the US and Ireland. Artikel-Nr. V9780306464287
Anzahl: 15 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Deals with the most basic notion of linear algebra, to bring emphasis on approaches to the topic serving at the elementary level and more broadly. A typical feature is where computational algorithms and theoretical proofs are brought together. Another is respect for symmetry, so that when this has some part in the form of a matter it should also be reflected in the treatment. Issues relating to computational method are covered. These interests may have suggested a limited account, to be rounded-out suitably. However this limitation where basic material is separated from further reaches of the subject has an appeal of its own. To the `elementary operations' method of the textbooks for doing linear algebra, Albert Tucker added a method with his `pivot operation'. Here there is a more primitive method based on the `linear dependence table', and yet another based on `rank reduction'. The determinant is introduced in a completely unusual upside-down fashion where Cramer's rule comes first. Also dealt with is what is believed to be a completely new idea, of the `alternant', a function associated with the affine space the way the determinant is with the linear space, with n+1 vector arguments, as the determinant has n. Then for affine (or barycentric) coordinates we find a rule which is an unprecedented exact counterpart of Cramer's rule for linear coordinates, where the alternant takes on the role of the determinant. These are among the more distinct or spectacular items for possible novelty, or unfamiliarity. Others, with or without some remark, may be found scattered in different places. Artikel-Nr. 9780306464287
Anzahl: 1 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 3011613/2
Anzahl: 1 verfügbar