These original contributions converge on an exciting and fruitful intersection of three historically distinct areas of learning research: computational learning theory, neural networks, and symbolic machine learning. Bridging theory and practice, computer science and psychology, they consider general issues in learning systems that could provide constraints for theory and at the same time interpret theoretical results in the context of experiments with actual learning systems.
In all, nineteen chapters address questions such as, What is a natural system? How should learning systems gain from prior knowledge? If prior knowledge is important, how can we quantify how important? What makes a learning problem hard? How are neural networks and symbolic machine learning approaches similar? Is there a fundamental difference in the kind of task a neural network can easily solve as opposed to those a symbolic algorithm can easily solve?
Stephen J. Hanson heads the Learning Systems Department at Siemens Corporate Research and is a Visiting Member of the Research Staff and Research Collaborator at the Cognitive Science Laboratory at Princeton University. George A. Drastal is Senior Research Scientist at Siemens Corporate Research. Ronald J. Rivest is Professor of Computer Science and Associate Director of the Laboratory for Computer Science at the Massachusetts Institute of Technology.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 5,50 für den Versand von Niederlande nach Deutschland
Versandziele, Kosten & DauerAnbieter: Kloof Booksellers & Scientia Verlag, Amsterdam, Niederlande
Zustand: as new. Cambridge, MA: The MIT Press, 1994. Paperback. 500 pp.- These original contributions converge on an exciting and fruitful intersection of three historically distinct areas of learning research: computational learning theory, neural networks, and symbolic machine learning. Bridging theory and practice, computer science and psychology, they consider general issues in learning systems that could provide constraints for theory and at the same time interpret theoretical results in the context of experiments with actual learning systems. In all, nineteen chapters address questions such as, What is a natural system? How should learning systems gain from prior knowledge? If prior knowledge is important, how can we quantify how important? What makes a learning problem hard? How are neural networks and symbolic machine learning approaches similar? Is there a fundamental difference in the kind of task a neural network can easily solve as opposed to those a symbolic algorithm can easily solve? English text. Condition : as new. Condition : as new copy. ISBN 9780262581264. Keywords : , Artikel-Nr. 250676
Anzahl: 1 verfügbar
Anbieter: G. & J. CHESTERS, TAMWORTH, Vereinigtes Königreich
Soft cover. Zustand: Very Good. 1st Edition. 566 pages, a VG paperback (does have a small crease across top corner of the back cover) [0262581264]. Artikel-Nr. 74398
Anzahl: 1 verfügbar
Anbieter: Ammareal, Morangis, Frankreich
Softcover. Zustand: Très bon. Ancien livre de bibliothèque. Edition 1994. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Very good. Former library book. Edition 1994. Ammareal gives back up to 15% of this item's net price to charity organizations. Artikel-Nr. F-924-466
Anzahl: 1 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 577 | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 41380194/202
Anzahl: 1 verfügbar