Verwandte Artikel zu Reinforcement Learning: An Introduction (Adaptive Computatio...

Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning series) - Hardcover

 
9780262193986: Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning series)

Zu dieser ISBN ist aktuell kein Angebot verfügbar.

Inhaltsangabe

Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning., Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes., Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Biografía del autor

Richard S. Sutton is Professor of Computing Science and AITF Chair in Reinforcement Learning and Artificial Intelligence at the University of Alberta, and also Distinguished Research Scientist at DeepMind. Andrew G. Barto is Professor Emeritus in the College of Computer and Information Sciences at the University of Massachusetts Amherst.

Reseña del editor

Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagMIT Press
  • Erscheinungsdatum1998
  • ISBN 10 0262193981
  • ISBN 13 9780262193986
  • EinbandTapa dura
  • SpracheEnglisch
  • Anzahl der Seiten344

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie kennen Autor und Titel des Buches und finden es trotzdem nicht auf ZVAB? Dann geben Sie einen Suchauftrag auf und wir informieren Sie automatisch, sobald das Buch verfügbar ist!

Kaufgesuch aufgeben