Verwandte Artikel zu The Minimum Description Length Principle (Adaptive...

The Minimum Description Length Principle (Adaptive Computation and Machine Learning Series) - Hardcover

 
9780262072816: The Minimum Description Length Principle (Adaptive Computation and Machine Learning Series)

Inhaltsangabe

The minimum description length (MDL) principle is a powerful method of inductive inference, the basis of statistical modeling, pattern recognition, and machine learning. It holds that the best explanation, given a limited set of observed data, is the one that permits the greatest compression of the data. MDL methods are particularly well-suited for dealing with model selection, prediction, and estimation problems in situations where the models under consideration can be arbitrarily complex, and overfitting the data is a serious concern.This extensive, step-by-step introduction to the MDL Principle provides a comprehensive reference (with an emphasis on conceptual issues) that is accessible to graduate students and researchers in statistics, pattern classification, machine learning, and data mining, to philosophers interested in the foundations of statistics, and to researchers in other applied sciences that involve model selection, including biology, econometrics, and experimental psychology. Part I provides a basic introduction to MDL and an overview of the concepts in statistics and information theory needed to understand MDL. Part II treats universal coding, the information-theoretic notion on which MDL is built, and part III gives a formal treatment of MDL theory as a theory of inductive inference based on universal coding. Part IV provides a comprehensive overview of the statistical theory of exponential families with an emphasis on their information-theoretic properties. The text includes a number of summaries, paragraphs offering the reader a "fast track" through the material, and boxes highlighting the most important concepts.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

The minimum description length (MDL) principle is a powerful method of inductive inference, the basis of statistical modeling, pattern recognition, and machine learning. It holds that the best explanation, given a limited set of observed data, is the one that permits the greatest compression of the data. MDL methods are particularly well-suited for dealing with model selection, prediction, and estimation problems in situations where the models under consideration can be arbitrarily complex, and overfitting the data is a serious concern.This extensive, step-by-step introduction to the MDL Principle provides a comprehensive reference (with an emphasis on conceptual issues) that is accessible to graduate students and researchers in statistics, pattern classification, machine learning, and data mining, to philosophers interested in the foundations of statistics, and to researchers in other applied sciences that involve model selection, including biology, econometrics, and experimental psychology. Part I provides a basic introduction to MDL and an overview of the concepts in statistics and information theory needed to understand MDL. Part II treats universal coding, the information-theoretic notion on which MDL is built, and part III gives a formal treatment of MDL theory as a theory of inductive inference based on universal coding. Part IV provides a comprehensive overview of the statistical theory of exponential families with an emphasis on their information-theoretic properties. The text includes a number of summaries, paragraphs offering the reader a "fast track" through the material, and boxes highlighting the most important concepts.

Biografía del autor

Peter D. Grunwald is a researcher at CWI, the National Research Institute for Mathematics and Computer Science, Amsterdam, the Netherlands. He is also affiliated with EURANDOM, the European Research Institute for the Study of Stochastic Phenomena, Eindhoven, the Netherlands.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagMIT Press
  • Erscheinungsdatum2007
  • ISBN 10 0262072815
  • ISBN 13 9780262072816
  • EinbandTapa dura
  • SpracheEnglisch
  • Anzahl der Seiten736
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Befriedigend
This is an ex-library book and...
Diesen Artikel anzeigen

EUR 7,88 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780262529631: The Minimum Description Length Principle (Adaptive Computation and Machine Learning series)

Vorgestellte Ausgabe

ISBN 10:  0262529637 ISBN 13:  9780262529631
Verlag: MIT Press, 2007
Softcover

Suchergebnisse für The Minimum Description Length Principle (Adaptive...

Beispielbild für diese ISBN

Peter D Grunwald
Verlag: MIT Press, 2007
ISBN 10: 0262072815 ISBN 13: 9780262072816
Gebraucht Hardcover

Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1250grams, ISBN:9780262072816. Artikel-Nr. 6722643

Verkäufer kontaktieren

Gebraucht kaufen

EUR 58,21
Währung umrechnen
Versand: EUR 7,88
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Grunwald, Peter D
Verlag: Mit Pr, 2007
ISBN 10: 0262072815 ISBN 13: 9780262072816
Gebraucht Hardcover

Anbieter: WorldofBooks, Goring-By-Sea, WS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardback. Zustand: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Artikel-Nr. GOR007756844

Verkäufer kontaktieren

Gebraucht kaufen

EUR 212,71
Währung umrechnen
Versand: EUR 4,10
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb