Verwandte Artikel zu Optimization for Machine Learning (Neural Information...

Optimization for Machine Learning (Neural Information Processing series) - Hardcover

 
9780262016469: Optimization for Machine Learning (Neural Information Processing series)

Inhaltsangabe

An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities.

The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields.
Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorinnen und Autoren

Suvrit Sra is a Research Scientist at the Max Planck Institute for Biological Cybernetics, Tü bingen, Germany.


Sebastian Nowozin is a Researcher in the Machine Learning and Perception group (MLP) at Microsoft Research, Cambridge, England.


Stephen J. Wright is Professor of Computer Science at the University of Wisconsin– Madison.


Dimitri P. Bertsekas is Professor of Electrical Engineering and Computer Science at MIT.


Masashi Sugiyama is Associate Professor in the Department of Computer Science at Tokyo Institute of Technology.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Befriedigend
Ships from the UK. Former library...
Diesen Artikel anzeigen

EUR 5,95 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780262537766: Optimization for Machine Learning (Neural Information Processing series)

Vorgestellte Ausgabe

ISBN 10:  0262537761 ISBN 13:  9780262537766
Verlag: MIT Press, 2011
Softcover

Suchergebnisse für Optimization for Machine Learning (Neural Information...

Beispielbild für diese ISBN

Sra, Paul H.
Verlag: MIT Press, 2011
ISBN 10: 026201646X ISBN 13: 9780262016469
Gebraucht Hardcover

Anbieter: Better World Books Ltd, Dunfermline, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Good. Ships from the UK. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages. Artikel-Nr. 41387796-20

Verkäufer kontaktieren

Gebraucht kaufen

EUR 40,40
Währung umrechnen
Versand: EUR 5,95
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb