Gives a unified approach to these techniques and guides graduate students, researchers, and practitioners towards understanding, applying and developing self-adaptive discretization methods.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Rüdiger Verfürth is Chair for Numerical Analysis at Ruhr-University, Bochum. He is a renowned expert in a posteriori error estimation and has been the Associate Editor of the SIAM Journal on Numerical Analysis since 2001. He has previously written a well-known book in the area: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques (Wiley, 1996)
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: PBShop.store US, Wood Dale, IL, USA
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. FU-9780199679423
Anzahl: 15 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. FU-9780199679423
Anzahl: 15 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 416 pages. 9.30x6.40x1.10 inches. In Stock. Artikel-Nr. __0199679428
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9780199679423_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 416 pages. 9.30x6.40x1.10 inches. In Stock. Artikel-Nr. x-0199679428
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - Self-adaptive discretization methods are now an indispensable tool for the numerical solution of partial differential equations that arise from physical and technical applications. The aim is to obtain a numerical solution within a prescribed tolerance using a minimal amount of work. The main tools in achieving this goal are a posteriori error estimates which give global and local information on the error of the numerical solution and which can easily be computed from the given numerical solution and the data of the differential equation. This book reviews the most frequently used a posteriori error estimation techniques and applies them to a broad class of linear and nonlinear elliptic and parabolic equations. Although there are various approaches to adaptivity and a posteriori error estimation, they are all based on a few common principles. The main aim of the book is to elaborate these basic principles and to give guidelines for developing adaptive schemes for new problems. Chapters 1 and 2 are quite elementary and present various error indicators and their use for mesh adaptation in the framework of a simple model problem. The basic principles are introduced using a minimal amount of notations and techniques providing a complete overview for the non-specialist. Chapters 4-6 on the other hand are more advanced and present a posteriori error estimates within a general framework using the technical tools collected in Chapter 3. Most sections close with a bibliographical remark which indicates the historical development and hints at further results. Artikel-Nr. 9780199679423
Anzahl: 2 verfügbar